

Study of quasi-projectile properties at Fermi energies in ⁴⁸Ca projectile systems

<u>Sahil Upadhyaya</u>^{1,2}, Katarzyna Mazurek¹, Tomasz Kozik², Diego Gruyer³, Giovanni Casini⁴ *et al.*

¹Institute of Nuclear Physics Polish Academy of Sciences (IFJ PAN), Krakow, PL ²Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, PL ³LPC Caen UMR6534, ENSICAEN, CNRS/IN2P3, Université de Caen Normandie, FR ⁴INFN – Sezione di Firenze, 50019 Sesto Fiorentino, IT

Publication

Article: <u>https://link.springer.com/article/10.1140/epja/s10050-024-01369-5</u> PhD Thesis: <u>https://inspirehep.net/literature/2086285</u>

Eur. Phys. J. A (2024) 60:157 https://doi.org/10.1140/epja/s10050-024-01369-5 THE EUROPEAN PHYSICAL JOURNAL A

Regular Article - Experimental Physics

Study of quasi-projectile properties at Fermi energies in ⁴⁸Ca projectile systems

FAZIA Collaboration

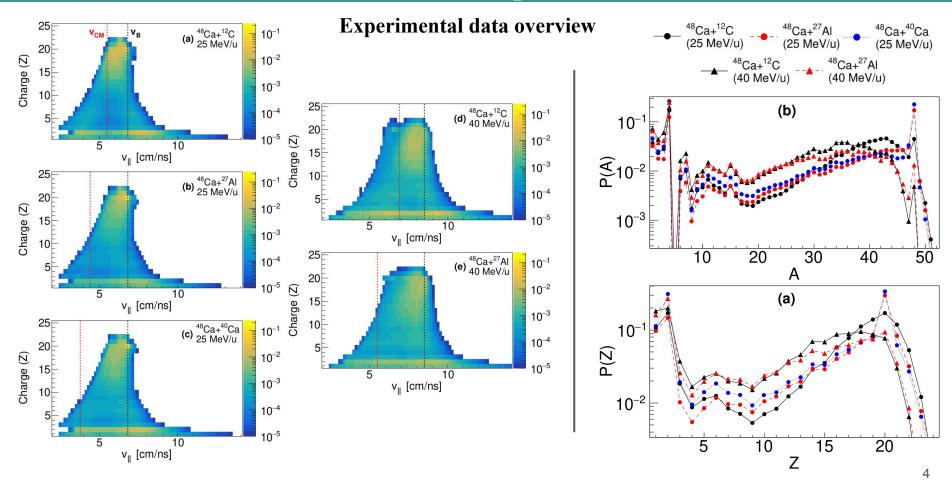
S. Upadhyaya^{1,2,a}, K. Mazurek², T. Kozik¹, D. Gruyer³, G. Casini⁴, S. Piantelli⁴, L. Baldesi^{4,5}, S. Barlini^{4,5}, B. Borderie⁶, R. Bougault³, A. Camaiani^{4,5}, C. Ciampi⁷, M. Cicerchia^{8,9}, M. Ciemała², D. Dell'Aquila^{10,11}, J. A. Dueñas¹², Q. Fable¹³, J. D. Frankland⁷, F. Gramegna¹⁴, M. Henri¹⁵, B. Hong^{16,17}, A. Kordyasz¹⁸, M. J. Kweon¹⁹, N. Le Neindre³, I. Lombardo^{20,21}, O. Lopez³, T. Marchi¹⁴, S. H. Nam^{16,17}, J. Park^{16,17}, M. Pârlog^{3,22}, G. Pasquali^{4,5}, S. Valdré⁴, G. Verde^{13,20}, E. Vient³, M. Vigilante¹¹

Received: 19 February 2024 / Accepted: 23 June 2024 / Published online: 26 July 2024

FAZIA-PRE experiment

FAZIA-PRE setup (INFN-LNS, Catania)

O Angular acceptance:
$\theta = 1.7^{\circ} - 7.6^{\circ} \& 11.5^{\circ} - 16.7^{\circ}$
315 14 45
Block 2 FAZIA-PRE
Angular Coverage
225 135
180

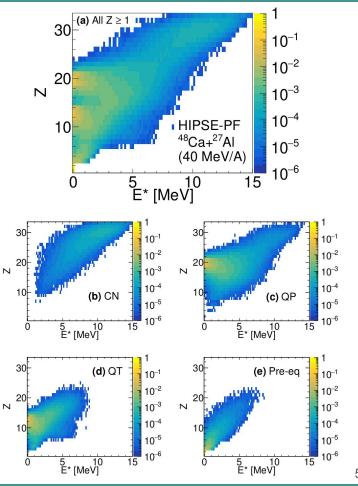

Goal: Study the effect of initial neutron richness on

properties of the quasi- projectile (QP) fragment

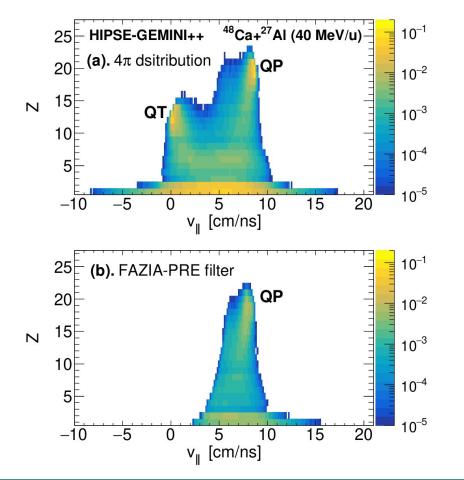
Table 1. FAZIA-PRE experimental details. ${}^{48}_{20}$ Ca projectile on ${}^{12}_{6}$ C, ${}^{27}_{13}$ Al and ${}^{40}_{20}$ Ca targets at 25 and 40 MeV/u beam energies (E_B) along with their corresponding target thicknesses (t), beam velocities (v_B), centre-of-mass velocities (v_{CM}), energies in centre-of-mass (E_{CM}), total isospin of the system ($N/Z_{\text{proj+tar}}$) and grazing angles in laboratory frame (θ_{gr}).

Projectile	$^{48}_{20}\mathrm{Ca}$				
$E_B \; [{\rm MeV/u}]$	25		40		
Target	$^{12}_6\mathrm{C}$	$^{27}_{13}{ m Al}$	$^{40}_{20}\mathrm{Ca}$	$^{12}_6\mathrm{C}$	$^{27}_{13}\mathrm{Al}$
$t \; [\mu { m g/cm}^2]$	239	216	500	239	216
$v_B \mathrm{[cm/ns]}$	6.8	6.8	6.8	8.5	8.5
$v_{CM} [\mathrm{cm/ns}]$	5.5	4.4	3.8	7.0	5.5
E_{CM} [MeV/u]	4.0	5.7	6.2	6.4	9.2
$N/Z_{ m proj+tar}$	1.31	1.27	1.2	1.31	1.27
$ heta_{gr}$	0.9°	1.8°	2.7°	0.5°	1.1°

FAZIA-PRE experiment

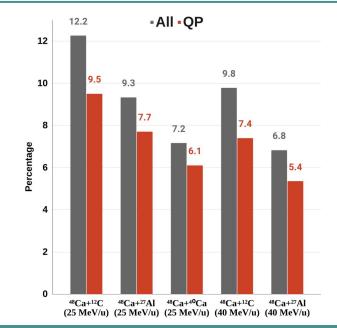


HIPSE Event Generator

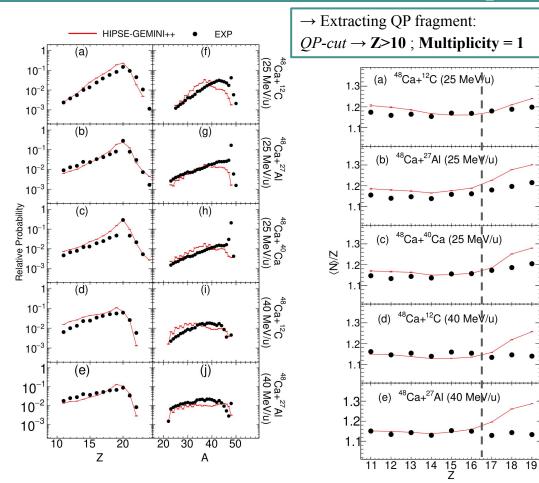

 \rightarrow The Heavy-Ion Phase Space Exploration (HIPSE) event generator – semi-phenomenological model – can simulate intermediate energy nuclear reactions at all impact parameters (b)

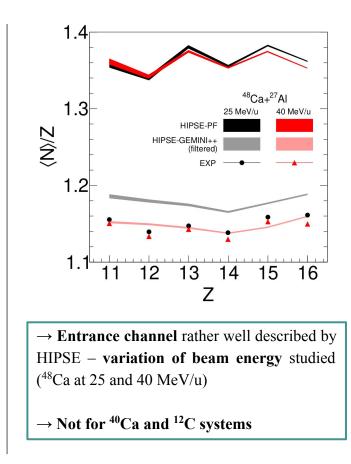
 \rightarrow The primary fragments (HIPSE-PF) generated by HIPSE have well-defined excitation energies (E^*)

 \rightarrow HIPSE data can be split according to the emission source of each fragment, namely: Pre-equilibrium (**Pre-eq**), quasi-projectile (**QP**), quasi-target (**QT**) and fusion-like fragments (**CN**).



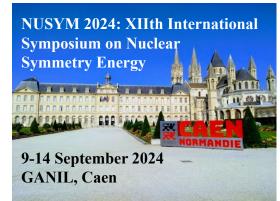
HIPSE Event Generator


→ For comparison, experimental conditions applied on HIPSE simulations


 \rightarrow According to the model, most of the detected ejecta (>70% overall) are QP fragments.

6

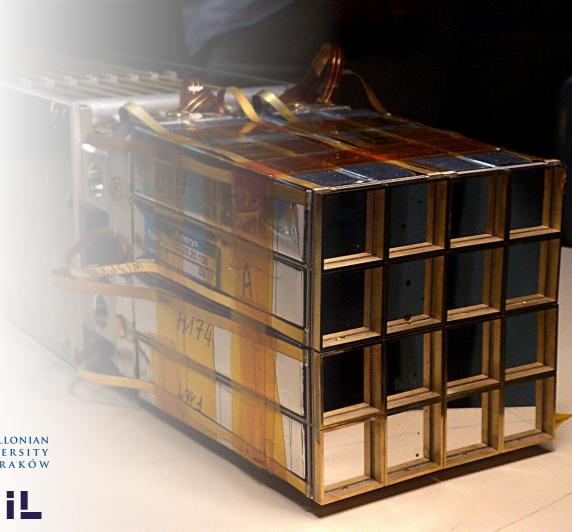
Data comparison



NUSYM 2024 XIIth International Symposium on Nuclear Symmetry Energy 9-14 September 2024 GANIL, Caen

7

Result and conclusion


- \rightarrow Idea of increasing neutron pre-equilibrium emissions with beam energy is not excluded but cannot be confirmed.
- \rightarrow There are multiple effects under consideration that alter the fragment $\langle N \rangle /Z$; therefore it is a difficult task for the models, and also for HIPSE, to accurately describe all those effects.
- \rightarrow From the results, it can be concluded that **HIPSE has proved to be a fine tool to generate the fragments** in nuclear reactions at intermediate energy range and **satisfactorily describe the basic reaction dynamics**.

THANK YOU !

This work was partially supported by the POLITA grant: project HARMONIA No. UMO-2014/14/M/ST2/00738 (COPIN-INFN Collaboration) and the Jagiellonian University DS research grant (K/DSC/005311/2018)

