XIIth International Symposium on Nuclear Symmetry Energy (NUSYM2024), Caen, 9-14 Sep., 2024

Possibility to examine the transportation model by charge-changing reactions at intermediate energies

Charge changing reactions

- Experiments and Results
- View from IQMD+GEMINI
- Summary

Bao-Hua Sun bhsun@buaa.edu.cn Beihang University

2024.09.09

Charge-changing cross sections of atomic nuclei

Reaction probability of knocking out one or more protons (Z) from projectile nuclei after collisions. It is correlated with the point-proton density distribution in projectile (ρ_p)

Projectile proton Target proton neutron (A_t, Z_t) (A_p, Z_p) **Projectile's neutron as spectators** NN cross section **Glauber Model** $\sigma_{\rm cc} = 2\pi \int b\{1 - \exp[-\int dr \rho_p^P (\sigma_{pp} \rho_p^T + \sigma_{pn} \rho_n^T)]\}db$ Point- proton and neutron density Point-proton density dist. of projectile nuclei distribution of target nuclei

Glauber-type model

Effective method by correlating x-sections with point-proton distribution density (ρ_p , thus R_p)

 R_p from CCCS & R_m from interaction x-section give R_n and thus neutron skin thickness!

Constraining EOS by σ_{cc} difference of mirror nuclei

 $\Delta\sigma_{cc}$: difference in charge-changing cross sections of mirror pairs on the same target at the same energy

Xu, Li, BHS, Niu, Roca-Maza, Sagawa, Isao Tanihata, *et al.*, arXiv:2205.05276, PLB833(2022) 137333

Charge changing reactions
 Experiments and Results
 View from IQMD+GEMINI

Summary

HIFRL/Lanzhou GSI/Darmstadt

Heavy Ion Research Facility in Lanzhou (HIRFL)

RIBLL2: the only radioactive ion beam line at relativistic energy (300-500 MeV/nucleon) in China

Experimental storage ring

Experiment station @ F4, RIBLL2/HIRFL, Lanzhou

- ➢ ¹⁸O, ⁴⁰Ar, ⁷⁸Kr beam @ 280, 350, 400 AMeV
- ➤ Target: C, CH₂, Ag, Pb

Absolute x-section measurement: precision<2%
 Counting of incident and forward products
 Event by event identification; Purity: >99.9%;
 Detector: sensitivity, resolution, acceptance

p-shell measurements at 900 AMeV at FRS/GSI

Particle identification

Zhang et al., Sci. Bull. 69 (2024) 1647

Consistent (largest) database for σ_{cc} (2014-2022)

1 What is missing in the model?

Wang et al., CPC47, 084001 (2023) Yamaguchi et al., PRC 82, 014609 (2010) Yamaguchi et al., PRL107,032502 (2011) $\sigma_{cc}^{calc} = 2\pi \int b[1 - T^P(b)]db$ $T^P(b) = \exp[-(\sigma_{pp}(E)\rho_p^T \rho_p^P + \sigma_{np}(E)\rho_n^T \rho_p^P)]$

Reaction mechanism of charge-changing reactions

② Parameterize the evaporation effect by the S factor

Dominant case: One-proton evaporation after one-neutron removal

The linear correlation makes model calibrations feasible!

Zhang *et al.*, Science Bulletin 69 (2024) 1647; Zhao *et al.*, arXiv:2407.10199v1

Mirror-difference charge radii

$$\Delta R_{\rm ch}^{mirror} = R_{\rm ch} \begin{pmatrix} A \\ N \end{pmatrix} - R_{\rm ch} \begin{pmatrix} A \\ Z \end{pmatrix}$$

$$N > Z$$

I=(N-Z)/A

Zhao et al., arXiv:2407.10199v1

- ➢ ¹¹⁻¹⁶C, ¹³⁻¹⁷N and ¹⁵⁻¹⁸O: 15 radii
- Radii of ¹¹C, ^{13,16}N, ¹⁵O for the first time
- Four mirror pairs for the first time, ¹⁸O-¹⁸Ne redetermined

Typical uncertainty: 2.5% (dominated by statistics)

 $\Delta R_{\rm ch}^{
m mirror} = 1.574 \cdot I \pm 0.021$ Theory: PRL130(2023)032501

Discrepancies seen for ³H-³He, ¹⁷N-¹⁷Ne (proton halo), σ_I, σ_{-p}, P_{//} ¹¹B-¹¹C (uncertainty in ¹⁰⁻¹¹B?) PRL 122, 182501 (2019)

③ How robust is the S-factor correlation?

Q: Is the S-factor correlation universal when employing different targets at different energies?

(4) Deduction of R_p from C, H target data

For C isotopes, very consistent R_p values are determined from C- and H-target data. This is the first time that both target data have been dealt with in a self-consistent way.

Consistent *R*_m **values for interaction x-sections on both C- and H-target**.

For N isotopes, systematically small R_p values are determined from H-target data compared to R_p from C-target data.

Experimental uncertainties or natural effects?

Zhang et al., Science Bulletin 69 (2024) 1647

Partial charge-changing cross sections $\sigma_{\Delta Z}$

Partial charge-changing cross sections: $\sigma_{\Delta Z}$

$$σ_{\Delta Z=1}$$
: ²⁸Si (Z=14) → AI (Z=13); $σ_{\Delta Z=2}$: ²⁸Si (Z=14) → Mg (Z=12)
 $σ_{\Delta Z=3}$: ²⁸Si (Z=14) → Na (Z=11).

Cocktail beam

Li, Su, BHS et al., PRC 107, 024609 (2023)

Charge dis. of ²⁸Si+C reaction

IQMD+GEMINI: another way to understand σ_{cc}

IQMD+GEMINI model: dynamical collision process (IQMD) and the following statistical de-excitation of intermediate residues (GEMINI)

e.g., Jun Su et al., Phys. Rev. C 83, 014608 (2011)

IQMD+GEMIN well reproduces $\sigma_{\Delta Z}$ of ²⁸Si+C

Li, Su, BHS et al., PRC 107, 024609 (2023)

IQMD+GEMIN for ²⁸⁻³³Si

- IQMD+GEMINI: can reproduce the Si chain
- Experimental data serve as the critical benchmarks to validate the In the IQMD+GEMINI model.
- Fairly good agreement allows to examine the knockout, multiple scattering, and nucleon evaporation within the model framework.

Li, BHS, Su *et al.,* arXiv *2407.14697*

Prediction of 1-proton removal xs in IQMD+GEMINI

- Contribution from inelastic scattering channels is increasing towards T_z<0
- This may help to resolve the longstanding puzzle in the proton knockout reactions (Gade et al., 2002 PRC)

24

Charge changing reactions

- Experiments and Results
- View from IQMD+GEMINI
- Summary

Summary

- We have been focusing on charge-changing reactions of *p-sd* shell nuclei on various targets (H, C, Ag, Pb) at 240, 300 and 900 MeV/nucleon.
- We identified a robust correlation with the S factor for p-shell nuclei. This allows us to develop an empirical but universal approach for deducing R_p. However, understanding the S factor correlation microscopically is not yet available.

■ Next steps:

Experimental evidence of direct proton removal process vs. charge particle evaporation Is the linear correlation with the *S* factor robust when moving from *p*-shell to heavier isotopes?

Can one get identical R_p or ρ_p from different target data?

IQMD+GEMINI can nicely reproducing the partial change-changing cross sections. Systematics data up to Kr fragments are on the way.