More neutron star radius measurements from NICER to understand dense nuclear matter

Sebastien Guillot

A. Watts, T. Salmi, D. Choudhury, S. Vincinguerra, And many people in the NICER Science team

Collaborators

<u>at IRAP</u> **Lucien Mauviard, Pierre Stammler,** Denis Gonzalez

Let's start with the conclusion...

Submitted results for another pulsar PSR J1231

Besides the top ~ 1km, the properties of neutron star interiors are mostly unknown.

1 OUTER CRUST

NUCLEI ELECTRONS

2 INNER CRUST

NUCLEI ELECTRONS SUPERFLUID NEUTRONS

3 CORE

SUPERFLUID NEUTRONS SUPERCONDUCTING PROTONS HYPERONS? DECONFINED QUARKS? COLOR SUPERCONDUCTOR?

Watts et al. 2016

The dense matter equation of state is a key question of fundamental physics and astrophysics

Supernovae mechanisms

To measure M_{NS} and R_{NS}, choose your players carefully!

Millisecond pulsars are old and fast rotating neutron stars

Advantages:

- Very stable on long time scalesLow B-fields and no accretion

- Purely thermal X-ray emission Additional info from radio/gamma

The hot X-ray emission of millisecond pulsar comes from e⁻/p⁺ bombardment of the surface heating the polar caps.

Strong gravity permits seeing beyond the hemisphere of the neutron star.

Pulse profile modelling to determine the compactness M_{NS}/R_{NS}

The Doppler effect break the degeneracy between M_{NS} and R_{NS}.

The effect depends on the line of sight velocity, i.e., <u>spin frequency</u> and <u>distance from rotation axis</u>

NICER has given us beautiful data sets to perform pulse profile modelling.

A radio timing solution of the MSP's rotation is critical to the analyses of NICER data.

Fonseca et al (2021) m_p (M_o)

The surface thermal emission is modelled with a NS atmosphere, not a black body.

Blackbody and NS atmosphere generate different pulse profile shapes

Bogdanov et al. (2007)

In the following, we used Hydrogen atmosphere models

For faint pulsars, the high background in the NICER data needs to be well constrained.

<u>3C50</u>: Empirical background estimates (from blank fields)
<u>SCORPEON</u>: Analytical background

External data: From the XMM-Newton observatory

The background in our NICER datasets can be constrained with XMM-Newton.

The XMM-Newton data provides a measure of the flux and phase-average spectrum of the MSPs

Wolff et al. (2021)

Radius (km) *Salmi et al., 2022*

The results for the first two pulsars were consistent with other measurements.

Cold Surface of MSP:Gonzalez-Caniulef et al. 2019Multiple quiescent LMXB:Baillot-d'Etivaux et al. 2019

Updates to those results were published recently.

PSR J0740+6620 a massive MSP +1.0 Msec of NICER data () 00 1.8 1 1 1 Salmi et al (2024) **PSR J0030+0451** an isolated MSP +XMM-Newton data

Vinciguerra et al (2024)

The new results from PSR J0437-4715 were long awaited...Why did it take so long?

Advantages:

- Precise priors (Reardon et. al. 2024):
 - $-Mass = 1.418 \pm 0.044$ Msun
 - Inclination = 137.506 ± 0.016 deg.
 - Distance = 156.98 ± 0.16 pc
- Nearest and brightest: High S/N
- Long observations: Msec of NICER data

Disadvantages:

- Neighbour bright source
- Offset pointing :

- Different instrument response

The radius constraints are the best so far...but with a complex geometry.

Altogether, these measurements constrain equation of state models.

Several NICER data sets are yet to be analysed to extract M_{NS} and R_{NS}. More results are coming...

+ a few other pulsars discovered with NICER (*Guillot et al* 2019)

What can we expect in the future with pulse profile modelling ? New-ATHENA

- Sensitivity: about x5 NICER
- Time resolution:
 - ◆ 10 µsec (X-IFU)
- Low-background: ~ 0.001 c/s

Future prospects for pulse profile modelling with new-Athena are quite promising.

Simulations of PSR J0740+6620 with P_{spin} = 2.88 msec and d=1.2 kpc

 $R{\sim}11.5$ km, M=2.08 M_{\odot} with 2 circular hot spots Simulation of 500 ksec observations

For some MSPs, the rest of the surface, although much colder than the hot spots, can be detected in the soft X-ray and the far UV.

Using Far UV observations for PSR J0437-4715, we obtain independent constraints on the radius.

Stammler et al., in preparation

 $R_{NS} = 12.1 \pm 1.0 \text{ km}$

Conclusions

- Pulse profile modelling is a demonstrated technique to measure M and R.
- NICER results for 3 pulsars are published; 1 is submitted; more are coming...
- We now know that characterising the background is key.
- Complementary methods exists to measure M and R.
- NewATHENA measurement will bring constraints on M and R to another level.

The future for pulse profile modelling looks quite promising, but you'll have to be patient!

eXTP (~2028)

- Modest imaging capabilities (60" PSF)
- + Hard X-ray instrument

NewAthena (~2037)

New-Athena can discriminate between different atmospheric compositions

The choice of atmosphere composition changes the inferred radius. To solve this degeneracy

Measure N_H independently
Use ATHENA

ATHENA Simulations of Hatmosphere data set, and run the inference with He- atmosphere model • For 200 ks: ln(Bayes Factor) ~ 30–60 • For 500 ks: ln(Bayes Factor) ~ 100–150

Spectral analysis with realistic atmosphere models can characterise the "cold" thermal component of PSR J0437-4715.

Fitting for T_{effs} and R_{NS} -9.5d = 156.79 pc-10.0 $M_{\rm PSR} = 1.44 \ {\rm M}_{\odot}$ Different $R_{\rm NS} = 13.1^{+0.9}_{-0.7} \,\rm km$ -10.5atmosphere models (Xn H) -11.0 adapted to "low" surface 00 -11.5 -0 Far UV **temperatures** -12.0-12.5-13.0-2.0-1.5-1.0-2.5-0.50.0Log (Energy) Gonzalez-Caniulef et al. (2019)