ZTF-IN2P3 Paris, LPNHE "NaCl"

11/01/2024

Mahmoud Ahmed Emam Osman *PhD student*

Introducing myself

Mahmoud Osman

1st year PhD student at LPNHE (ZTF x DESI)

Under the supervision of Nicolas Regnault (ZTF) and Pauline Zarrouk (DESI)

Part of my work involves looking at a **new way to improve the standardization of type Ia supernova light curves**

Introduction : standardising supernova lightcurves

- Cosmological information can be inferred from supernova lightcurves (distances) with the distance luminosity
- For that we need to **reconstruct the restframe flux** from the measured flux
- Type Ia Supernovae can be **standardised** due to the low natural dispersion between light curves
- This is done by training an empirical model

stretch-factor corrections Source : Huterer & Shafer (2017)

The NaCl framework

- Framework developed at LPNHE by Guy Augarde (Augarde 2022)
- Simplifies the training process of SN Ia models
 - **One single iteration** that encapsulate the full training into **a single minimisation**
 - **Propagates the calibration uncertainties** (used to necessitate many parallel trainings) by going into the likelihood
 - Much faster than before and can be used by anyone
- Model **independent :** Easy to plug in another model (SUGAR, SNEMO, etc...). Currently uses the SALT2 model

 $S(\lambda, \mathbf{p}) = \mathbf{X}_{0} \times \left[\mathbf{M}_{0}(\lambda, \mathbf{p}) + \mathbf{X}_{1} \times \mathbf{M}_{1}(\lambda, \mathbf{p}) \right] \ 10^{0.4 cCL(\lambda)}$

• Goal : train the full model (doesn't distinguish light curve fitting and training)

Merging training and light curve fit

Merging training and light curve fit

Parameters

Merging training and light curve fit

After the fit we can only keep the parameters belonging to each SN which encodes the **cosmology** and we keep the **covariance matrix**

Data selection

224 SNe

3135 spectra

Coverage

Coverage of the data points in the dataset

10

Fit : bases of the model

- Wavelength and phase are defined on a basis of spline of order 4.
 - Each basis contains a number of **knots** on which are projected the model surfaces.

$$M_{0|1} = \sum_{i} \sum_{j} \theta_{i,j}^{0|1} \mathcal{B}(p)_{i} \mathcal{B}(\lambda)_{j}$$

Where $M_{0|1}$ the model surfaces, $\theta_{i,j}^{0|1}$ the projections of the surfaces on each knot, $\mathscr{B}(p)_i$ and $\mathscr{B}(\lambda)_j$ are the spline basis.

Fit : technicalities

Fitting the previously mentioned data on :

- Wavelength basis :
 - Range = (2000.0A 11000.0A)
 - Knots = 55A
 - Adapted basis = (3500A 3800A), (5900A 6200A), (7700A, 8300A) with knots every 30A
- Phase :
 - Range = (-20, 50)
 - Knots = 3.5 days

Fit : grid

Model grid used during SNfactory data fit

13

Fit : Error model

• Currently for the SNfactory data fit we've added an error snake to the variance of the model :

$$\mathbf{V}_{ii}^{\text{snake}} = (\gamma \times \text{flux})^2$$

- After the fit we get $\gamma = 0.103$
- It's important to note that it is to plug in another error model in NaCl

Minimization steps

First fit without error snake

Second fit with error snake

Around 18 mins

Around 11 mins

Examples of some fits done with NaCl

Residuals and χ^2

- Weighted residuals after fitting the model
- Noticed the areas where the fit doesn't describe the data very well
 - Early phase region
 - High phase region
- Spectral features
 - Ca peak
 - Si II peak
 - UV area
- Model doesn't capture the variability in those areas

Fitted spectra and pulls

SN:CSS110918_01 at p=-7

Fitted spectra and pulls

SN:CSS110918_01 at p=1

Fitted spectra and pulls

SN:CSS110918_01 at p=6

Local χ^{2}

Here we have the values of χ^2 calculated for different regions of the model

Correlation matrix

Correlation matrix

Future work

- NaCl:
 - Have the basspands loaded directly from sncosmo
 - Find an error model that is more adapted
- Use the ZTF data & SNFactory in a training
- Finish the integration in LEMAITRE
- Beyond SALT:
 - We would also like to see if we can **extend the SALT model** in order to describe the areas that haven't been captured well during the fit. This will be inspired by the Stein et al. (2023) **Probabilistic AutoEncoder** model

Thank you for your attention!!

Backup slides

Regularization

- Adding a penalty to the Chi2 for regions for which we do not have data
- Having a simple penalty on the 1st derivative of the model isn't enough
- Having a constant penalty is also not enough

$$\chi^{2}_{reg} = \sum_{i} \mu_{0} \theta^{2}_{i} + \mu_{1} (\theta_{i+1} - \theta_{i})^{2}$$

- We found that having an adaptive regularization works best
- The overall penalty is multiplied by a certain factor for it to be relevant and that factor can bias the results if too high

$$\chi^2_{reg} = (\mathbf{MD})^T (\mathbf{MD})\Theta$$
$$_{M_i = \max(\mu - s_i, 0)}$$

No snake

28

No snake

SALT2 surfaces

SALT2 surfaces

