ZTF-France meeting, LPNHE, 11-12 January 2024

ZTF passbands

Philippe Rosnet, Chloé Barjou-Delayre and Nicolas Regnault

ZTF instrument: Schmidt-telescope

Instrument elements (1)

Instrument elements (2)

ZTF filter characterization (Caltech)

Filter transmission dependency

 Approximate angular dependence of interference filter transmission (arXiv:0908.3808)

$$T(\lambda, \theta) = T\left(\lambda \left[1 - \frac{\sin^2 \theta}{n^2}\right]^{-1/2}, \theta = 0\right)$$

 Determination of the effective refracting index of filters: shift of 0° data according to formula above to match 4° data by using as reference point the centre of the filter

Instrument	g-band	r-band	i-band
SDSS	1.70	1.80	1.60
ZTF	1.85	1.95	1.75
	Estim	ations	Extrapolation

 Quantification of the filter transmission shift by computing the 1st moment = mean value of filter transmission

$$\langle \lambda \rangle = \frac{\int \lambda T(\lambda) d\lambda}{\int T(\lambda) d\lambda}$$

ZTF r-filter shift versus incident light angle

ZTF r-filter transmission

- The estimated refracting index $n_r \approx 1.95$ allows to predict the filter transmission at any light incident angle
- <u>Question</u>: What is the real light incident angle on ZTF camera?

ZTF camera

- Pixel size = $15 \mu m \equiv 1.01''$
- CCD = 6144 col \times 6160 row \equiv 1.724° R.A. \times 1.728° Dec.

Model result versus incident angle

Mean incident angle on camera = 8.632811012624552

Model results: focal plane relative illumination

Camera at the limit of the field-of-view of the telescope

Model result: mean light incident angle on camera

12

Model result: median light incident angle on camera

g-band: Caltech data

Filter transmission measured at 0° are compared to filter in SNCosmo

g-band: synthetic filter

- Synthetic filters compared to filter in SNCosmo
- First-moment mean shift = -1.74 nm

r-band: Caltech data

Filter transmission measured at 0° are compared to filter in SNCosmo

r-band: synthetic filter

- Synthetic filters compared to filter in SNCosmo
- First-moment mean shift = -2.10 nm

ZTF i-filter: no measurement at 0°

- First attempt (assuming linear behaviour): simple application of shift formula $5^{\circ} \xrightarrow{+3.8^{\circ}} 8.8^{\circ}$
- New extrapolation: $5^{\circ} \xrightarrow{-5^{\circ}} 0^{\circ} \xrightarrow{+8.8^{\circ}} 8.8^{\circ}$

i-band: Caltech data

Filter transmission measured at 5° are compared to filter in SNCosmo

i-band: synthetic filter

- Synthetic filters compared to filter in SNCosmo
- First-moment mean shift = -3.21 nm

Chloé work: light-curve fit with new filters

New filters = optics + SNCosmo filters extrapolated at 8.8° + QE single/double layers

Chloé work: SNCosmo light-curve fitting

Chloé work: DR2 r-band light-curve residuals

Chloé work: DR2 g-band light-curve residuals

Conclusions and next step

Conclusions

- Almost all pieces to build an instrument model
- First instrument card for SNCosmo (Nicolas)

	instrument.cards
# mirror size (cm^2) = Schmidt trim pl @MIRROR_AREA 12154.3	ate pi*(124.4/2)^2
<pre># transmission of the optics (Schmidt @OPTICS_TRANS ztf_optics_transmission.</pre>	trim plate + CCD field correctors) txt
<pre># reflectivity of the mirror (P48) @MIRROR_REFLECTIVITY ztf_mirror_reflec</pre>	tivity.txt
<pre># atmospheric transmission (Almost unk #@ATM0SPHERIC_TRANS modtran_maunakea_a</pre>	nown at Mont Palomar) m12_pwv15_binned10ang.dat
<pre># filters (radially varying filter tra @RADIALLY_VARIABLE_FILTERS FilterWheel</pre>	nsmission)
# QE of CCD's #@QE qe_ccd_hsc.txt	
# QE of individual CCD's (Single and d @QE_PER_CCD ztf_qe_ccd_1_2_3_4_13_14_1	ouble layer coating CCD's) 5_16.txt ztf_qe_ccd_5_6_7_8_9_10_11_12.txt
# pixel size (in as) @PIX_SIZE 1.01	

Next step: test with Gaia data

- Applied synthetic photometry to Gaia spectra
- Compare color indexes (g-r, r-I, g-i) to ZTF starflat data