January 2024

Constance GANOT - IP2I (Lyon) Under supervision of Yannick COPIN & Mickael RIGAULT

Twins Embedding

ZTF spectra calibration

Standardisation

Spectro-standardisation of ZTF Sne Ia

Summary

Part I

- Twins
- Twins Embedding

Part II

- Flux calibration of ZTF spectra
- Standardisation with SALT on ZTF spectra

Context

Twins

SNF20070531-011 SNF20071003-016 0.5 days $Flux + offset$ 3.4 days z days .9 davs 5000 6000 7000 8000 4000 Wavelength (λ) in AA

Spectral time-series of two 'Twins' Sne Figure from Fakhouri 2015

Twins have lower dispersion in luminosity than spectroscopically dissimilar Sne - Figure from Fakhouri 2015

Twins supernovae have matching spectral time-series

—> Only one spectrum at maximum per SN Ia is sufficient to have the variation information

—> magnitude dispersion is smaller for the lowest 'twiness' parameters

Twins Embedding - Boone et al. 2021

Spectrophotometric standardisation method Using Machine Learning

1. Differential time evolution model 2. RBTL - remove grey scatter and extinction 3. Manifold Learning - parameters reduction

From K.Boone et al. 2021. SN Factory spectra fluxes STD, in function of wavelengths, for different numbers of Manifold Learning components (parameters reduction)

Pre-processing data : Adjust relative brighness of the Sne to a common redshift

Capture 84.6% of the spectral evolution variance common to every Sne between -5 and 5 days

Fitted parameters : $f_{\scriptscriptstyle S}(p,\lambda_k)$ the model flux of spectrum s $\epsilon(p, \lambda_k)$ the model uncertainties common to all Sne, *the gray offset of the spectrum s mgray*,*^s* $c_{1,2}(\lambda_k)$ the coefficients common to all Sne

Formula of quadratic evolution in phase :

 $m_i(p; \lambda_k) - m_i(0; \lambda_k) = p \cdot c_1(\lambda_k) + p^2 \cdot c_2(\lambda_k)$

with p the phase,

 $c_{1,2}(\lambda_k)$ the coefficients common to all Sne $m_i(p,\lambda_k)$ the magnitude of the SN i

Differential time evolution model **STEP 1** *=> Spectra @ max*

Known:

 $f_{obs}(p,\lambda_k)$ the observed flux of spectrum s

Quadratic evolution in phase of SN Ia spectra

$$
f_{\text{meas., s}}(p; \lambda_k) \sim N(f_s(p; \lambda_k); \sigma_{\text{tot., s}}^2
$$
 (p; λ_k)

$$
f_s(p; \lambda_k) = 10^{-0.4(m_i(p; \lambda_k) + m_{\text{gray},s})}
$$

$$
\sigma_{tot,s}^{2} (p; \lambda_{k}) = \sigma_{\text{meas.},s}^{2} (\lambda_{k}) + (\epsilon(p; \lambda_{k}) \cdot f_{s}(p; \lambda_{k}))
$$

Capture 84.6% of the spectral evolution variance common to every Sne between -5 and 5 days

Fitted parameters : $\epsilon(p, \lambda_k)$ the model uncertainties common to all Sne, *the gray offset of the spectrum s mgray*,*^s* $c_{1,2}(\lambda_k)$ the coefficients common to all Sne

Formula of quadratic evolution in phase :

$$
m_i(p; \lambda_k) - m_i(0; \lambda_k) = p \cdot c_1(\lambda_k) + p^2 \cdot c_2(\lambda_k)
$$

with p the phase,

 $c_{1,2}(\lambda_k)$ the coefficients common to all Sne $m_i(p,\lambda_k)$ the magnitude of the SN i

Differential time evolution model **STEP 1** *=> Spectra @ max*

Known:

 $f_{meas.,s}(p,\lambda_k)$ the observed flux of spectrum s σ _{meas.,s}(λ _{*k*}) the measured uncertainty of sp. s

Quadratic evolution in phase of SN Ia spectra

$$
f_{\text{meas., s}}(p; \lambda_k) \sim N(f_s(p; \lambda_k); \sigma_{\text{tot., s}}^2
$$
 (p; λ_k)

$$
f_s(p; \lambda_k) = 10^{-0.4(m_i(p; \lambda_k) + m_{\text{gray},s})}
$$

$$
\sigma_{tot,s}^{2} (p; \lambda_{k}) = \sigma_{\text{meas.},s}^{2} (\lambda_{k}) + (\epsilon(p; \lambda_{k}) \cdot f_{s}(p; \lambda_{k}))
$$

Capture 84.6% of the spectral evolution variance common to every Sne between -5 and 5 days

Fitted parameters : $\epsilon(p, \lambda_k)$ the model uncertainties common to all Sne, *the gray offset of the spectrum s mgray*,*^s* $c_{1,2}(\lambda_k)$ the coefficients common to all Sne

Known: $f_{meas.,s}(p,\lambda_k)$ the observed flux of spectrum s σ _{meas.,s}(λ _{*k*}) the measured uncertainty of sp. s

Formula of quadratic evolution in phase :

 $m_i(p; \lambda_k) - m_i(0; \lambda_k) = p \cdot (c_1(\lambda_k)) + p^2 \cdot (c_2(\lambda_k))$

with p the phase,

 $c_{1,2}(\lambda_k)$ the coefficients common to all Sne $m_i(p,\lambda_k)$ the magnitude of the SN i

Differential time evolution model **STEP 1** *=> Spectra @ max*

Quadratic evolution in phase of SN Ia spectra

meas., s $(P, \triangle K)$ \longrightarrow \cup $s(P, \triangle K)$, \cup tot., s

$$
\sigma_{tot,s}^2(p;\lambda_k) = \sigma_{\text{meas.},s}^2(\lambda_k) + (\epsilon(p;\lambda_k) \cdot f_s(p;\lambda_k))
$$

STEP 2 **8 2 2 2 Read between the lines (RBTL) Explain Scatter Between the lines**

Remove variability:

- Magnitude offset (e.g peculiar velocity of host)
- Extinction (e.g Dust in the host)

Fitted parameters : Δm_i the offset with mean for SN i $\Delta A_{V,i}$ the extinction coefficient for SN i *the intrinsic dispersion (common to all) η*(*λk*) $\widetilde{4}$ *V*,*i*

Areas with large intrinsic dispersion ($\eta(\lambda_k)$) are deweight during the fit :

Known: $f_{max,i}(\lambda_k)/\sigma_{f_{max},i}^2(\lambda_k)$ the spectrum flux/uncertainty at max for SN i $f_{mean}(\lambda_k)$ the mean spectrum at max *the extinction law (Fitzpatrick 99) C*(*λk*)

Fit all together with bayesian inference :

$$
f_{\text{model},i}(\lambda_k) = f_{\text{mean}}(\lambda_k) \times 10^{-0.4} \sqrt{\Delta m_i + \Delta \tilde{A}_{V,i}}
$$

$$
\sigma_{\text{total},i}^2(\lambda_k) \in \sigma_{f_{\text{max.,}i}}^2(\lambda_k) + \left(\eta(\lambda_k)\right)_{\text{model},i}(2)
$$

$$
(f_{\max,j}(\lambda_k)) \sim N(f_{\text{model},i}(\lambda_k); \sigma_{\text{total},i}^2)
$$

Between the lines

Capture Grey scatter + Extinction

STEP 2 **2 2 2 Read between the lines (RBTL) Explain Scatter performance Read between the lines**

Remove variability:

Areas with large intrinsic dispersion ($\eta(\lambda_k)$) are deweight during the fit

SNFactory spectra before/after dereddening, and residual intrinsic dispersion (std) - from Boone 2021

Between the lines

Capture Grey scatter + Extinction

- Magnitude offset (e.g peculiar velocity of host)
- Extinction (e.g Dust in the host)

$$
f_{\mathrm{dered.},i}(\lambda_k) = f_{\mathrm{max.},i}(\lambda_k) \times 10^{+0.4(\Delta m_i + \Delta \tilde{A}_{V,i} C(\lambda_k))}
$$

STEP 2 **2 2 2 Read between the lines (RBTL) Explain Scatter performance Read between the lines**

Remove variability:

Areas with large intrinsic dispersion ($\eta(\lambda_k)$) are deweight during the fit

SNFactory spectra before/after dereddening, and residual intrinsic dispersion (std) - from Boone 2021

Between the lines

Capture Grey scatter + Extinction

- Magnitude offset (e.g peculiar velocity of host)
- Extinction (e.g Dust in the host)

$$
f_{\mathrm{dered.},i}(\lambda_k) = f_{\mathrm{max.},i}(\lambda_k) \times 10^{+0.4(\Delta m_i + \Delta \tilde{A}_{V,i} C(\lambda_k))}
$$

The Twins Embedding parameters space **STEP 3** *I* Λ **he IWINS Embedding parameters space** => Explain $(\eta(\lambda_k))$

Spectral distance between two Sne I and j :

$$
\gamma_{ij} = \sqrt{\sum_{k} \left(\frac{f_{\text{dered.},i}(\lambda_k) - f_{\text{dered.},j}(\lambda_k)}{f_{\text{mean}}(\lambda_k)} \right)^2}
$$

Isomap algorithm embed high-dimensional space to low-dimentional while preserving distances

But it does not provide a model of a spectrum given its coordinates in the embedding : for that they use Gaussian Process

86.6% of variance explained with 3 components

Fraction of the variance explained for different models from Boone 2021

Sill

 4000

H&K 4130

Call

 0.0

Waxalength Mi **13** *Twins Embedding three components variation effects Dependancy of the variance explained with S/N Figure from Boone 2021*

 (5000)

Sill

6355

Sill

5972

5000

 OI

triplet

7000

Call

IR triplet

ACOO

The Twins Embedding parameters space

Dependancy of the variance explained with S/N and binning

With ZTF Spectra

Steps :

- **MERUX calibration of the spectral MECORTECT from the Milky Way** Put each spectrum at same z
- Convert the flux in magnitude and put to phase=0

 $m_i(p; \lambda_k) - m_i(0; \lambda_k) = p \cdot c_1(\lambda_k) + p^2 \cdot c_2(\lambda_k)$

Correction of RBTL variability by fitting the Δm_i and ΔA $\widetilde{4}$ *V*,*i*

 $f_{\text{dered.},i}(\lambda_k) = f_{\text{max.},i}(\lambda_k) \times 10^{+0.4(\Delta m_i + \Delta \tilde{A}_{V,i} C(\lambda_k))}$

Projection on the 3 components space to get *ξ*

Standardisation of the magnitude residuals …

ZTF Data - Plan

- Flux calibration of ZTF spectra
- Correction of the MW and the redshift
- Standardisation of the spectra with SALT

Lightcurves of ZTF20abxzrqw In ztf-g, ztf-r, ztf-i filters

A point on the lightcurve corresponds to the spectrum integrated on the band

Synthetic Photometry

Synthetic photometry with ZTF filters For ZTF18abjijwk at phase 0.45

2nd order polynomial :

 $poly \sim c_2 \cdot \lambda_{norm}^2 + c_1 \cdot \lambda_{norm} + c_0$

Legendre Polynomials :

We normalise wavelengths between -1 and 1 *λnorm* $= 2 \cdot$ *λ* − *λmin λmax* − *λmin* − 1

Minimisation function :

Polynomial converted in magnitude :

$$
m_{model} - m_{init} = -2.5 \cdot \log_{10} \left(\frac{f_{model}}{f_{init}} \right)
$$

Spectrophotometric Calibration

Example of calibration with ZTF18abjijwk

$$
\chi^2 = \sum_{N} \left(\int_{3 \text{filters}} f_{obs}(\lambda) \cdot \text{poly}(\lambda) \cdot d\lambda - F_{photo}^{g,r,i} \right)^2
$$

Calibrated, corrected of MW and redshift at 0.05, for 1075 spectra of 985 Sne Ia (cosmology cuts + phase bewteen +/-5 days)

Spectrophotometric Flux Calibration

For 2367 spectra

Standardisation with SALT - applied to ZTF spectra

$$
\Delta \mu(\lambda) = m_{corrected}(\lambda) - (M_B - \alpha \cdot x_1 - \beta c)
$$

19 *Intrinsic variabilty after RBTL - from Boone 2021*

nMAD of sample initially and after SALT correction+standardisation

Method :

Correct the fluxes from SALT parameters and redshift Convert the fluxes in ABmag, and apply Tripp standardisation

$$
f_{corrected}(\lambda) = \begin{cases} \frac{f_{init}(\lambda) \cdot (1+z) \cdot d_L(z)^2}{10^{-0.4 \cdot CL(\lambda_{rest}) \cdot c}} - x0 \cdot x1 \cdot M_1(\phi, \lambda_{rest}) \\ \times \frac{M_0(\lambda_{rest}, 0)}{M_0(\lambda_{rest}, \phi)} \cdot \frac{1}{(1+z_{ref}) \cdot d_L(z_{ref})^2} \end{cases}
$$

Conclusion

MFlux calibration of the spectra

Preparation of the sample : correction of the MW and redshift

MSALT standardisation, SNEMO

Test the *Twins Embedding* method with ZTF spectra

More methods can be tested, like *PAE* by G.Stein

To map the magnitude residuals through the TE space : linear standardisation not sufficient, instead Gaussian Process regression :

$$
\vec{m}_{\text{RBTL}} \sim \mathcal{GP}\left(m_{\text{ref}} + \omega \Delta \vec{A}_V, \mathbf{I} \cdot (\vec{\sigma}_{p.v.}^2 + \sigma_u^2) + K_{3/2}(\vec{\xi}, \vec{\xi}; A, l)\right)
$$

Fitted parameters :

 \overline{m}_{RBTL} the magnitudes residuals of the RBTL , ΔA_V the reddening coefficients, \overline{a} ⃗

ξ the coordinates in the TE space,

 $\overrightarrow{\sigma}_{p.v.}^2$ the host galaxy peculiar velocity variance

Known :

The standardisation using Twins Embedding **BACK-UP SLIDE**

 a common reference magnitude mref a linear correction term ω the unexplained residual dispersion σu the GP kernel parameters A, *l*

George GP regression python package is used for the fit

Before/after correction of magnitude residuals with GP from Boone 2021b

Method : Correct the fluxes from SALT parameters, convert the fluxes in ABmag, and apply Tripp standardisation

Standardisation with SALT - applied to ZTF spectra BACK-UP SLIDE

de initially and after SALT correction+standardisation

$$
c \cdot CL(\lambda_{rest})/(1+z)
$$

$$
f_{Initials}(\lambda) = f_{meas}(\lambda) \cdot \frac{(1+z) \cdot d_L(z)^2}{(1+z_{ref}) \cdot d_L(z_{ref})^2}
$$
\n
$$
\Delta \mu_{Initials}(\lambda) = F_{to}M\left(f_{Initials}(\lambda)\right)
$$
\n
$$
f_{corrected}(\lambda) = \begin{cases} \frac{f_{init}(\lambda) \cdot (1+z) \cdot d_L(z)^2}{10^{-0.4 \cdot CL(\lambda_{rest}) \cdot c}} - x0 \cdot x1 \cdot M_1(\phi, \lambda_{rest}) \end{cases} \cdot \frac{M_0(\lambda_{rest}, 0)}{M_0(\lambda_{rest}, \phi)} \cdot \frac{1}{(1+z_{ref}) \cdot d_L(z_{ref})^2}
$$

 $\Delta \mu_{stand}(\lambda) = F_{to}M(f_{corrected}(\lambda)) - (M_B - \alpha \cdot x_1 - \beta c)$

Flux modelled with SALT, in observed wavelengths :

 $F(\lambda, \phi) = x_0 \cdot \left[M_0(\lambda_{rest}, \phi) + x_1 \cdot M_1(\lambda_{rest}, \phi) \right] \cdot 10^{-0.4 \cdot c \cdot CL(\lambda_{rest})}$

Hubble diagram
$$
\mu = m_B - (M_B - \alpha \cdot x_1 - \beta c)
$$

analogy: $\mu(z) = + 2.5 \cdot \log_{10}(\left[\frac{d_L(z)}{10pc}\right])$

Calibrated, corrected of MW and redshift at 0.05, for 1075 spectra of 985 Sne Ia (cosmology cuts + phase bewteen +/-5 days)

Spectrophotometric Flux Calibration Corner plot des 3 histogrammes (dire le nbr de sp, *For 2367 spectra* **mettre tableau en backup)**

