# Update on DR2 papers

Madeleine GINOLIN - 11 janvier 2024













### Stretch paper

- 1. Introduction
- 2. Data
- Stretch distribution 3.
  - 1. The nearby SN Ia stretch distribution
  - 2. Correlation between SN stretch and SN environment
- 4. Stretch-residuals relation
  - 1. SNe la standardisation
  - 2. Environmental dependency of the stretch standardisation
  - 3. Linearity of the stretch-residuals relation
  - 4. Environmental dependency of the stretch-magnitude non-linearity
- SN la standardised magnitudes (steps) 5.
- 6. Discussion
  - 1. Robustness tests
  - 2. Broken  $\alpha$  and linear standardisation biases
- 7. Conclusion
- A. Fitting procedure









### **Step values**





### Mass evolution of the stretch modes





4

### **EDRIS vs regular likelihood minimisation**



Total  $\chi^2$ -5.0 -2.5 0.0 2.5 5.0  $\Delta \alpha$  (in  $\sigma$ ) -2.5 -5.00.0 2.5 5.0  $\Delta\beta$  (in  $\sigma$ ) -5.0 -2.5 0.0 2.5 5.0

 $\Delta \gamma$  (in  $\sigma$ )

See Dylan's talk (this afternoon) for more details



## Colour paper

- 1. Introduction
- 2. Data
- 3. Colour distribution
- 4. Colour-residuals relation
  - 1.  $\beta$  dependence on environment
  - 2. Linearity of the colour-residuals relation
- 5. Colour dependency of SN Ia standardised magnitudes (steps)
- 6. Discussion
  - 1. Robustness tests
- 7. Conclusion











### **Colour distribution**

 $P(c) = \mathcal{N}(c \mid c_{\text{int}}, \sigma_c) * \begin{cases} 0 & \text{if } c \le 0\\ \frac{1}{\tau} e^{-c/\tau} & \text{if } c > 0 \end{cases}$ 



Jha et al 2007 Mandel et al 2011, 2017

### **Colour distribution**





Jha et al 2007 Mandel et al 2011, 2017







### **Colour distribution Searching for a dustless sample**









### **Colour distribution Searching for a dustless sample**









### **Colour distribution Searching for a dustless sample**









### **BS20 plots** Residuals against colour









### $|0\rangle$

### **BS20 plots** Steps against colour





11

### **BS20 plots** Scatter against colour









### **Colour standardisation** Linearity of the colour-residuals relation





### **β evolution with environment** Simple case ( $\alpha$ free)





### **β evolution with environment** Simple case ( $\alpha$ fixed)





### **β evolution with environment** Simple case (fixing everything)





# **β** evolution with environment Adding the broken $\alpha$ ( $\alpha_{high}$ and $\alpha_{low}$ fixed)



17

### **β evolution with environment** Adding a local colour step





### **β** evolution with environment **Remaining questions**

- Which model to fit for each mass bin
  - Simple case: only  $(\beta, \alpha)$  + offset
  - Broken- $\alpha$  standardisation:  $(\beta, \alpha_{low}, \alpha_{high})$  + offset
  - Adding a local colour step:  $(\beta, \alpha, \gamma)$
- ➡ What to fix/free
- Evolution with other environment proxies?



### Colour paper



















### **β evolution with environment** Fixing everything with a broken α



