Exploring the Epoch of Reionization with numerical simulations : the LoReLi database

Romain Meriot

3rd year PhD student at LERMA Paris Observatory Advisor : Benoit Semelin

February 28, 2024

The Epoch of Reionization

Figure: Illustration of the evolution of the universe

The 21 cm line of neutral Hydrogen

- Hyperfine transition at the HI ground state
- Observed by radiotelescopes: $\lambda \sim 1m$
- Seen in contrast with the Cosmic Microwave Background (CMB)

Brightness temperature

$$\delta T_b \propto 27 x_{HI} (1+\delta) \left[\frac{T_s - T_{CMB}}{T_s} \right] \, \mathrm{mK} \quad (1)$$

- XHI : neutral fraction
- δ : overdensity
- T_s : spin temperature, $\frac{n_1}{n_0} = 3e^{-T_{21}/T_s}$ depends on gas temperature and local Ly- α flux

Observations (nope $\ () /)$

Full 3D Signal

Square Kilometer Array (~ 2030)

Meanwhile : Attempts at measuring the power spectrum of the fluctuations of the signal (e.g HERA, LOFAR, NenuFAR in France)

We only have upper limits...

Figure: Upper limits on the power spectrum, expected instrumental sensitivity (*red lines*), predictions of the semi-analytical code 21cmFast, EDGES detection range. *Credit : Florent Mertens*.

The LICORICE simulation code

N-body simulation

- Coupling between dynamics and **3D** radiative transfer
- **Gravity** : TREE+Smoothed Particle Hydrodynamics
- **Gas physics** (photoionization, collisional ionization, recombination, cooling...)

Figure: Temperature slice from a LICORICE simulation. Time flows from the left to the right; Light blue regions are ionized.

Purpose of the PhD

Parameter inference

 \longrightarrow MCMC with high-res simulations :

 $<10^{11}\ \text{cpu}\ \text{hours}$

 \longrightarrow Machine learning : 100x fewer

simulations

($\sim 10^3$, Doussot et al. 2019)

Figure: Illustration of parameter inference : one wants to find out which parameters correspond to the observations ("True") • LICORICE simulations are expensive ! \rightarrow very low resolution (256³ particles...)

Let's build a database of 10000 simulations and use it to train a neural network to perform the inference

Without subgrid modeling, gaz particles denser than 100 \sim 200 $\langle \rho_0 \rangle$ form stars :

$$df_* = (1-f_*)rac{\mathrm{dt}}{ au_{SF}}$$

- f_{*} : stellar mass fraction
- τ_{SF} : typical star formation time

Problem : resolution limit

- At best : $\sim 300 \, {\rm Mpc}$ on a side, 2048³ particles \longrightarrow resolved halos : $\sim 4 \times 10^9 \, {\rm M_{\odot}}$
- smallest star-forming halos : $\sim 10^8\,{\rm M}_\odot$

(2)

At 256³ resolution...

Figure: ionization map of a 256 3 particles simulation at $z\sim7$

Figure: temperature map of a 2048 3 particles simulation at $z\sim7$

 \longrightarrow Let's add subgrid models to improve star formation $_{(and \ perhaps \ a \ few \ other \ aspects \ too...)}$

Solution : estimating the mass of non-resolved halos with Conditional Mass Functions (CMF)

Figure: Illustration of the implementation : for each particle, we calculate its conditional mass function n_c , then its collapsed fraction f_{coll} , then form stars with $df_* = (f_{coll} - f_*) \frac{dt}{\tau_{cc}}$

Star formation rate

Figure: CMF of HIRRAH (2048³) and theoretical predictions at different overdensities

With the subgrid modelling:

We can accurately model the EoR at low-res ! Reminder : low resolution simulations are 10000 times faster !

Figure: Average brightness temperature in 2048^3 (HIRRAH) and 256^3 (LORRAH) simulations with the same parameters.

Database of simulations : LoReLi II

- 10000 simulations
- $\sim 5 \times 10^6$ cpuh, 1.5PB of data
- 5 parameters : escape fraction, X-ray emissivity, hard/soft X-ray ratio, 2 SFR Parameters
- Calibrated using observational constraints on star formation rate and reionization timings
- Cubes of : f_{coll} , δ , f_{ion} , $\langle T \rangle$, T_{HI} , x_{α} , δT_b
- powerspectra, global signals, raw data+cubes to calculate additional summaries

Database of simulations : LoReLi II

Figure: LoReLi power spectra as a function of z, $k \sim 0.1 h/cMpc$

Figure: LoReLi spectra as a function of k, z = 9

Neural network emulator of the code

- Train a neural network to emulate the simulation (3x512 neurons MLP, \sim 5% error)
- Plug the emulator into an MCMC framework
- Perform classical MCMC inference

Figure: 100 \times $\langle (\frac{P_{sim}-P_{emu}}{P_{sim}})^2 \rangle$ of the emulator

Inference with emulator

- Perform MCMC inference on some emulated signal
- uncertainty : noise (SKA 100h), cosmic variance, model error
- 10 emulators were trained with different random weight initializations
- approximate Gaussian likelihood : logL = $\sum_{k,z} \frac{(P_{obs}(k,z) - P_{pred}(k,z))^2}{\sigma^2}$

Figure: MCMC inference with the LoReLi emulators. Average prediction in red (Meriot & Semelin 2024) \$16/38\$

Inference on actual HERA data !

- MCMC inference with the emulator on data from HERA Collaboration 2022a
- Consistent results : exclusion of cold reionization models (small f_X)

Figure: MCMC inference with the LoReLi emulator on HERA data. Red : prior, blue : posterior. (Meriot & Semelin 2024)

- Modelling of the EoR with fast simulations + subgrid models
- LoReLi I (760 simulations, https://21ssd.obspm.fr/), LoReLi II (10000 simulations) !
- We do inference on real data with 3D RT simulations for the first time !
- Next steps : Full comparison between inference techniques on LoReLi II (emulator vs Likelihood-free Inference vs Bayesian Neural Networks, WIP :))

The End

Neural network emulator of the code

Figure: **Top** : randomly selected simulated power spectra. **Bottom** : corresponding emulated power spectra (Meriot & Semelin 2024)

Likelihood free inference

Figure: Illustration of Likelihood free inference : fitting the joint probability density allows direct evaluation of the posterior

Figure: DELFI workflow (from Zhao et al 2022)

Direct inference on noised signals using Bayesian Neural Networks

Figure: BNN architecture : 4 conv layer 1 dense, 1 dense variational layer, output layer. Weights are drawn from learned gaussian distributions, and the network outputs a distribution of physical parameters. Here : means + covariance matrix

Figure: Relative error for each value of f_x , 100h SKA noise. Epistemic (= suboptimal training set) uncertainty : ~ 25% of total uncertainty

Comparison between inference methods (WIP !)

- Train power spectrum emulator on LoReLi II and perform MCMC inference on some emulated signal + noise (SKA 100h)
- Train BNN on LoReLi II, forward pass to get posteriors
- Train NDE on LoReLi II, MCMC on signal + noise

lonization maps

1.0 250 250 **0.8** 8.0 ionized fraction 200 200 Мрс 150 150 Large structures recovered, but 100 100 ionization more 50 50 uniform at low-res 0.0 100 200 100 200

Mpc, average ionized fraction = 0.44 Mpc, average ionized fraction = 0.49

Figure: Ionization maps for a 256³ simulation (*left*), and the 2048³ reference (*right*), at \sim 45% ionization on average

Why do we care ?

: spin temperature

$$T_s^{-1} \approx \frac{T_{CMB}^{-1} + x_\alpha T_{gas}^{-1}}{1 + x_\alpha}$$
(4)

- $z \gtrsim 11$: Star formation, $x_{\alpha} \nearrow$
- $z \leq 11$: X-ray heating, $T_{gas} \nearrow$
- $z \sim 6$: Reionization, XHI \searrow

Average signal in a high resolution simulation

What's next ? Likelihood free inference

Figure: Illustration of Likelihood free inference : fitting the joint probability density allows direct evaluation of the posterior

Figure: DELFI workflow (from Zhao et al 2022)

What about NenuFAR/LOFAR ?

- LOFAR : still too high
- NenuFAR : constraints only on exotic models : strong SFR, very strong excess radio background (Ar ~ 1000 !!)

Figure: *Credit : Florent Mertens*. Most recent upper limits from LOFAR (3 leftmost panels) and NenuFAR (right panel). Green solid : standard LoReLi models. Green dashed : exotic LoReLi models with Ar = 1000, $M_{min} = 10^8 M_{\odot}$, $M_{min} = 4.10^7 M_{\odot}$

Bayes equation

$P(\theta|D) \propto P(D|\theta) imes P(\theta)$

- Observed data D, astrophysical parameters θ
- $P(\theta)$ **Prior** knowledge of parameters
- $P(D|\theta)$ Likelihood
- $P(\theta|D)$ Posterior

We determine the posterior by evaluating the likelihood for many (carefully chosen) values of heta

(5)

Instantaneous star formation (like in semi analytical codes)

Figure: Signals of two Licorice simulations : with time dependent SF (green) and with instantaneous SF (red) $_{\!/38}$

Parameter space

Parameters

- Star formation : M_{min} , τ_{SF}
- X-rays : f_X , $r_{H/S}$
- escape fraction : initial, threshold, final

Figure: Explored parameter space in the M_{min}/τ_{SF} plane. (in practice : 20 points) 32/38

Building the database !

Figure: Star formation rate in simulations with $log(M_{min}) \in [8, 9.6]$ and $log(\tau_{SF}) \in [3, 4.3]$. Red : rejected by the χ^2 test.

Building the database !

Figure: Average ionized fraction of 600 models.

Temperature of partially ionized particles polluted by the ionized part (unresolved ionization fronts)

- Ross et al. 2016 : "twin simulations" with and without Xrays, post-processing : ~Ok results
- 21cmFAST : No partial ionization

We now calculate the HI temperature for each particle during the simulation (Adiabatic cooling + X-rays)

Figure: Temperature of the neutral gas : average T of weakly (< 2%) ionized particles (solid lines) and native temperature of their neutral phase (dashed lines)

Solution : estimating the mass of non-resolved halos with Conditional Mass Functions (CMF)

We affect to each particle the mass of unresolved halos depending on its density δ_0 and its volume ($\leftrightarrow \sigma_0$).

mass fraction of the region that lies in
halos
$$f_{coll} = V \int_{M_{min}}^{M_{region}} n_c(M) dM/M_{region} \quad (6)$$

Basic version : *Extended Press-Schechter* : Lacey&Cole 1993

$$n_{c}(M) = \sqrt{\frac{2}{\pi}} \frac{d\sigma}{dM} \frac{\rho_{0}}{M} \frac{(\delta_{c} - \delta_{0})\sigma}{(\sigma^{2} - \sigma_{0}^{2})^{3/2}} e^{\frac{(\delta_{c} - \delta_{0})^{2}}{2(\sigma^{2} - \sigma_{0}^{2})}}$$
(7)

$$df_* = (f_{coll} - f_*) \frac{\mathrm{dt}}{\tau_{SF}}$$

Recombination rate

$$\mathit{Rec} \propto \langle \mathit{n_en_{HII}}
angle \propto \langle \mathit{n_{HII}^2}
angle$$

However : limited resolution, $\langle n_{HII}^2 \rangle \neq \langle n_{HII} \rangle^2$

Theoretical solution ?

Clumping factor
$$C = \langle n_e n_{HII} \rangle / \langle n_{HII} \rangle^2$$
 (9)
 $Rec \propto C \langle n_{HII} \rangle^2$ (10)

Weak recombination : similar SFR
$$\rightarrow$$
 earlier reionization at low-res

Many implementations !

Kaurov Gnedin 2013, Mao et al 2019, Bianco et al 2020, Chen et al 2020...

 \longrightarrow None of them work (No coupling with temperature, high number of parameters, increasing error...

(8)

Escape fraction model

Variable escape fraction : small if local ionized fraction below a given threshold.

Figure: lonized fraction of a 256³ simulation with parameters close to those of the 2048³. 2 different values of f_{esc} are used depending on the local ionized fraction.