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How does the GNN work for
Particle Identification ?

e/mu

e/gamma

e/pi0

Energy reconstruction for e & mu



How does the GNN work
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Events at high energy

O

Large number of PMTs triggered (around
3000 hit PMTs per event).

For each PMT, 5 distinct pieces of data are

collected: Position (x, y, z), Charge, Time
Result: MASSIVE DATASET

These events exhibit a  distinctive
geometrical shape (like a ring). Our goal
is to identify patterns using the 5 pieces of
information from each hit PMT.

Graphs are an excellent tool for this
purpose! ©
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But why not use a CNN ?

O

Data is represented in a cylindrical 3D
format, making it challenging for
conventional CNNs to handle

CNNs are not great with non-fixed-size
inputs. In our case, the number of hit
PMTs can vary.

CNNs only capturing spatial hierarchies.
But events are not just about the spatial
understanding of data but also its
temporal and charge characteristics

Graphs are an excellent tool for this
purpose! © :
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Node : Hit PMT
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Hit PMT

e Hit coordinates

(X, y, 2)
« Charge (Q)
e Hittime (t)

Features.
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Hit PMT 2
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Hit PMT 1

Hit coordinates
(x,y, z)

Charge (Q)

Hit time (t)

e Hit coordinates

(x,y, z)
« Charge (Q)
 Hittime (t)

Hit PMT 4

 Hit coordinates
(x,y, )

« Charge (Q)

 Hittime (t)
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e |Based on which criteria are

the nodes close ?
* Physical proximity (x,y,z)
* Charge, time proximity (Q,t)
 Both!

o | 11T T

* How many neighbours per

node do we connect ?
 Too many : too much
memory allocated, same info
* Not enough : less info

\ 4
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e Based on which criteria are

the nodes close ?
e Phvsical proximitv (x.v.z)

[ * Charge, time proximity (Q,t) |
* Both'!
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* How many neighbours per

node do we connect ?
 Too many : too much
memory allocated, same info
* Not enough : less info

\ 4
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e Based on which criteria are

the nodes close ?
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e Based on which criteria are

the nodes close ?
* Physical proximity (x,y,z)
* Charge, time proximity (Q,t)
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* How many neighbours per

node do we connect ?
 Too many : too much

memory allocated, same info
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0 HoWwiaoestthelGININMWOorKoraPlDye.

e Based on which criteria are

the nodes close ?
* Physical proximity (x,y,z)
* Charge, time proximity (Q,t)
* Both!

* How many neighbours per

node do we connect ?
 Too many : too much
memory allocated, same info
* Not enough : less info
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* Hit coordinates
(X, y,2)

« Charge (Q)

Hit time (t)

Hit PMT 2

* Hit coordinates
(x,y, 2)
« Charge (Q) :
o Hittime (t) e
Hit PMT 1 « Hit coordinates
* Hit coordinates (%, y, 2)
(x,y, 2) « Charge (Q)

« Charge (Q) « Hittime (t)
* Hittime (t)

12/12/2023 ”



G HowidoestthelGININAWOrksroraPl e

 Hit coordinates
(X, Y, )
/ « Charge (Q)
Hit time (t)

Hit PMT 2

Hit PMT 4

Hit PMT 1

e Hit coordinates

(x,y,2)
« Charge (Q)
* Hittime (t)
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Hit PMT 2

Hit PMT 4

T Hit PMT 1
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O

/ Aggregates and

transforms information
from neighboring nodes
to update each node's
feature. Reflecting local
graph structures
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Main Features

o Graph Convolution: Aggregates information from
neighboring nodes to update each node. (graph-based
learning)

o Gate Mechanism: Uses a weight (between 0 and 1) to
control the amount of information that is passed from
one node to another. (adaptive control of information
flow)

o Residual Connection: Adds the original node information
to its updated information, facilitating gradient
propagation. (enhanced gradient propagation)

12/12/2023

It's a neural network
layer designed to
work with data
structured as graphs.
It combines
elements of graph
convolution, gating
mechanisms, and
residual
connections.
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Pooling

Y 1D

# of convolutional (1, #nodes),
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Activated
W, b1

Weight Biais

INPUT NEURONS

(Graph representation

as 1D vector)
12/12/2023
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INPUT NEURONS

(Graph representation

as 1D vector)
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INPUT NEURONS

(Graph representation

as 1D vector)
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INPUT

(Graph representation

as 1D vector)
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| NEURONS NEURONS

NEURONS ]

# of hidden layers

32



INPUT

(Graph representation

as 1D vector)
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| NEURONS NEURONS

NEURONS ]

# of hidden layers

OUTPUT
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INPUT

(Graph representation

as 1D vector)
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| NEURONS NEURONS

NEURONS ]

# of hidden layers

OUTPUT

®
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INPUT | NEURONS NEURONS NEURONS ]

(Graph representation

as 1D vector) .
12/12/2023 # of hidden layers




G HowidoesithelGINNMWoOrkioRPl D).

INPUT

(Graph representation
as 1D vector)

# of hidden layers



\ } INPUT \NEURONS NEURONS IOUTPU'

(Graph
Y representa Y
tion as 1D
# Of vector) .# Of
convolutional hidden
layers layers
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NEURONS ] OUTPU

|
# of

hidden
layers

This is how to o from

# of
convoluti event to g ra p h

layer: classification ! ©
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o Particle Identification
e/mu.



e Particleldentificationie/mus

a) Architecture b) Results
_ ChargeProfile_pmtType0
— Entries 2286297
— f\ Mean 53.29
70000 [— RMS 30
60000 [ — / Jk 8 |
= { -
50000 [— // 1l gamma
= il
O 40000 %
- [
E gil!
Muon .- g%
- : N
* Smaller standard i AN \M e L
20 40 60 80 100 120 140 160 180

devation: Compared to
electrons and gammas, = e -

which also broaden on
the outside.

* Higher peak value: The
charge per unit angle is

\ higher for the muon. Y,
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Q Particieldentificationiey/mus

a) Architecture b) Results
_ ChargeProfile_pmtType0
— Entries 2286297
70000 |— h g&a‘sn 53':2;8
60000 — . (h 1) e |
= L -
50000 [— / / V il gamma
QO 40000 :// Aﬁ ‘_. ™~
1E | Electron.
Muon 20000 = Electromagnetic \
- = Shower Phenomenon: a
* Smaller standard process unique to the

electron. (Difference
with the Muon)
Broadened Distribution:
Inside and outside the

ring j

devation: Compared to
electrons and gammas,
which also broaden on
the outside.

* Higher peak value: The
charge per unit angle is

\ higher for the muon. jL
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a) Architecture

)
O)
O
LLI

b) Results

Connect the nodes
according to their
spatial proximity.
(x,y: 2)

Ring shape difference

e/mu : the sharpness.

how dense the hit
PMTs are.

Features.

Hit PMT

« Charge (Q)
 Hittime (t)
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a Particleldentificationie/mus

a) Architecture b) Results
e Number of events : 180k e, « Neighbours = 7
180k mu e Convolutionnal
. (Energy : 100 MeV to 1000 J layers = 2
ey - * Batch size = 8
 Direction and position : e Learning rate = e-
Uniform & isotropic 5
e Signal : e, Background : mu « Hidden layers = 2
 80% train, 20% evaluation SR

N\
N
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a Particleldentificationie/mus

a) Architecture

12/12/2023

Results on Enerc

ROC curve

[b) Results ]

T T
_—— AUC = 1.00

1072

Muon background acceptance

99% efficiency at
5% bg acceptance,
omparable to fitqun

Electron signal efficiency



a) Architecture b) Results
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Electron identification efficiency vs Energy

1.010

1.005 1

1.000 -

0.995 +

0.990 +

o

(o)

<)

)
1

Efficiency at 5\% muon background contamination

Train : 500 MeV | Eval : Continuous energy spectrum
—— Train : Continuous energy spectrum | Eval : Continuous energy spectrum
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a) Architecture b) Results
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Electron identification efficiency vs dwall

—— Train : Continuous energy spectrum | Eval : Continuous energy spectrum

s
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| |
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Efficiency at 5\% muon background contamination

200 400 600 800
dwall (cm)
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a) Architecture b) Results
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Electron identification efficiency vs towall

0.96 -

0.94 -

Efficiency at 5\% muon background contamination

—— Train : Continuous energy spectrum | Eval : Continuous energy spectrum

T

100 200 300 400 500 600 700 800
towall (cm)
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o Particle Identification
e/gamma.



e Particieldentificationiey/gammas

a) Architecture b) Results
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a) Architecture b) Results
x10° . TimeTOFProfile_pmtType0
300 [— ‘ Entries 228629
— Mean 2.28
L ;L RMS 6.8
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e Particielldentificationie/gammat

a) Architecture

12/12/2023

Edge.

b) Results

Connect the nodes
according to their
proximity in Charge,
time, spatial
coordinates.

Ring shape difference

e/gamma : Main

difference in Q, t.

Features.

Hit PMT
« Charge (Q)
* Hittime (t)

 Position (x,y,z)




e Particieldentificationie/gammas

a) Architecture b) Results

* Number of events : 20k e, 20k
gamma

* | Energy : 500 MeV J

 Direction and position :
Uniform & isotropic

* Signal : e, Background :
gamma

e 80% train, 20% evaluation

N

12/12/2023

Neighbours = 30
Convolutionnal
layers = 3

Batch size = 16
Learning rate = e-
5

Hidden layers = 2
Neurons = 256

e
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e Particieddentificationiey/sammas

58% efficiency at

50% bg acceptance...

Very preliminary results
I Ongoing optimization
Will try no add vertex
information to the

a) Architecture b) Results
ROC curve 1
100 - S AllJC = 0t54 !
)—) -"
I
—" I
8 10! / |
-
% ]
0 rs I
O [ I
© 10-2
_O I | |
= 1
> -
o [
o) .
5 |
S I
O 1073 |
(U B
£ I
€ I
@ | |
S | nodes
1074 I
0.0 0.1 0.2 0.3 0.4 0.5 i 0.6 0.7 0.8 0.9
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Electron signal efficiency
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o Particle Identification
e/piO0.



Q Eocusioniey/pidiseparation

a) Architecture b) Results

Number of events :
20k e, 20k pi0 J

nergy : 500 MeV

* Direction and position :
Uniform & isotropic

e Signal : e, Background : pi0

e 80% train, 20% evaluation

12/12/2023

* Neighbours =30

e Convolutionnal
layers =3

 Batchsize =16

* Learning rate = e-
5

 Hidden layers =2

* Neurons = 256
\
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a) Architecture b) Results
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Pi0 background acceptance

ROC curve

10° =

1071 =

1072 =

1073 ¢

1074 =

1075 =

§ S S i ' ! i ' i ! ' ! i I ' I i ' i I
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Electron signal efficiency

98% electron
efficiency!! at

25% pi0 bg

acceptance. (FitQun :

94% at 25% bg
acceptance)
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Q Eocusionie/pioiseparation

a) Architecture b) Results

Electron identification efficiency vs dwall (fixed energy 500 MeV, e/pi0 separation)

.
o
L

Better
performances

o
o)
L

overall than
fitQun

o
o
L

0.2
—$— GNN
0.0 —4— FitQun | FitQun used for 2020
: : : : : — LBL & atmospheric
0 200 400 600 800 1000 HK production

dwall (cm)

Electron Efficiency at 25% pi0 background contamination
o
~
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Q Eocusioniey/pidiseparation

a) Architecture b) Results

Electron identification efficiency vs towall (fixed energy 500 MeV, e/pi0 separation)

I S i Better
/ performances

1.0

0.8

< ' overall than
fitQun

o
o
1

Electron Efficiency at 25% pi0 background contamination
o
iy

0.2
—$— GNN
0.0 - ¢ —¢— FtQun |FitQun used for 2020
200 400 600 500 LBL & atmospheric
towall (cm) HK production

58



Energy reconstruction for
e & mu.




e ERENgyreconstrictionfiopersamus

a) Architecture b) Reconstruction biais & RMS
!
* Number of events : 20k e, 20k * Neighbours =7
mu  Convolutionnal
* (Energy : 100 MeV to 1000 layers = 2
MeV  Batch size =8
* | Direction and position : e Learning rate = e-
Uniform & isotropic ) 5
 Hidden layers =2
e 80% train, 20% evaluation e Neurones =128
N

\ 4 Same as for
e/mu PID
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e ERergyre constrictioniorersamus

|
_
o

Energy Bias (%)

|
o
S

—40 -

|
)
S

a) Architecture b) Reconstruction biais & RMS

Mean of Residuals vs Predicted Values for e

RMS of Residuals vs Predicted Values for e

w
t
L

______ ) --—i—'**--- N
;\?25‘
S
5201
2
o
3151
>
Very preliminary results ! § | "y

Still trying to understand
the energy bias

. . : . , 0-
200 400 600 800 1000
Predicted Energy
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600
Predicted Energy

9% at 500 MeV,
comparable to
FitQun (7%)
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e ERergyre constrictioniorersamus

| |
(S~} —
S =] o

Energy Bias (%)

|
o
S

—40

a) Architecture b) Reconstruction biais & RMS

Mean of Residuals vs Predicted Values for mu

RMS of Residuals vs Predicted Values for mu

-_,_-—--_!_

Energy resolution (%)

Very preliminary results !
Still trying to understand -
the energy bias

200 400 600 800 1000
Predicted Energy

12/12/2023

7% at 500 MeV,

comparable to
FitQun (6%)

600
Predicted Energy

62



e/mu 99% electron efficiency at 5% muon bg | 99% electron efficiency at
acceptance, 5% muon bg acceptance,
Dwall, towall analysis: After 2 m, efficiency
above 99.4% |

e/gamma 58% efficiency at 50% bg acceptance... None

e/pi0 98% electron efficiency at 94% electron efficiency at
25% pi0 bg acceptance

25% pi0 b t
Dwall, towall analysis : after 2m, 70 pi0 bg acceptance

effi C|ency above 98%
Energy *  Electron : 7% resolution
reconstructio |+ Muon : 7% resolution at 500 MeV at 500 MeV
n fore & mu e Still trying to understand the energy |[* Muon : 6% resolution
bias at 500 MeV




Conclusion.

o The GNN introduces an intriguing tool for particle identitfication
and energy reconstruction.

o It provides promising results in terms of PID efficiency. When
compared to fitqun, GNN shows comparable, if not superior,
performance in PID for e/mu, e/pi0, and energy reconstruction.

o Enables quicker particle identification: For e/mu PID, GNN
processes in just 5s per event, while fitqun requires 10s.

o GNN: A tool to continue developing. ©



