Probing the deep string spectrum

Chrysoula Markou

LAPTh Annecy February 22, 2024

European Research Council Established by the European Commission

Generalities of the spectrum

• two universal string parameters: α' and g_S

infinitely many physical states

$$M^2 = \text{integer} \times \frac{1}{\alpha'}$$

that are thought of as:

1. mass eigenstates \Rightarrow on-shell mass

2. irreps of SO(D-1) or $SO(D-2) \Rightarrow TT$ 1-particle states à la Bargmann and Wigner ?

▶ What does the spectrum look like? Is there a bigger symmetry?

The physicality condition

- ► bosonic strings: the string field can be expanded in *modes* α_n^{μ} with oscillator algebra: $[\alpha_m^{\mu}, \alpha_n^{\nu}] = m\delta_{m+n}\eta^{\mu\nu} \Rightarrow$ Fock space
- ▶ string states: functions of $\alpha_{k<0}^{\mu}$
- energy–momentum tensor on the worldsheet \Rightarrow modes:

$$L_n = \frac{1}{2} \sum_{m=-\infty}^{+\infty} : \alpha_{n-m} \cdot \alpha_m : \quad , \quad \alpha_0^{\mu} \sim p^{\mu}$$

which satisfy the Virasoro algebra

$$[L_m, L_n] = (m-n)L_{m+n} + \frac{c}{12}m(m^2 - 1)\delta_{m+n}$$

 physical states must satisfy the Virasoro constraints three are sufficient

see e.g. Sasaki, Yamanaka 1985

$$(L_0 - 1)|\text{phys}\rangle = 0$$
 , $L_1|\text{phys}\rangle = 0$, $L_2|\text{phys}\rangle = 0$

A covariant way: vertex operators

state-operator correspondence (here for open bosonic strings):

 $\alpha_{-n_1}^{\mu_1} \dots \alpha_{-n_k}^{\mu_k} |0; p\rangle \quad \leftrightarrow \quad \partial^{n_1} X^{\mu_1} \dots \partial^{n_k} X^{\mu_k} e^{ip \cdot X}$

operator ingredients: primary ∂X and its descendants

$$V(z) = F\left(\partial X^{\mu}, \partial^2 X^{\mu}, \dots, \partial^k X^{\mu}\right) e^{ip \cdot X}$$

impose the physical state condition:

$$[Q,V] \stackrel{!}{=} \text{tot. deriv.} \Rightarrow h_V = 1, \quad \alpha' p^2 = 1 - N, \quad h_F = N \quad \& \text{ Wigner}$$

▶ first few levels:

$$N = 0: \quad V_{\text{tach}}(p, z) = e^{ip \cdot X}$$

$$N = 1: \quad V_{\epsilon}(p, z) = \epsilon_{\mu} \partial X^{\mu} e^{ip \cdot X} \quad (T)$$

$$N = 2: \quad V_{B}(p, z) = B_{\mu\nu} \partial X^{\mu} \partial X^{\nu} e^{ip \cdot X} \quad (TT)$$

 $[g_0, T^a]$ and normalizations in front of v.o. omitted for simplicity]

Example: the leading Regge trajectory

▶ leading Regge: highest spins ∀ level oscillator language:

$$\epsilon_{\mu_1\ldots\mu_s}(p) \, \alpha_{-1}^{\mu_1}\ldots\alpha_{-1}^{\mu_s}|p\rangle$$

vertex operator language:

$$V(p,z) = F_1 e^{ip \cdot X} = \sum_s \epsilon_{\mu_1 \dots \mu_s}(p) \, \partial X^{\mu_1} \dots \partial X^{\mu_s} e^{ip \cdot X}$$

Virasoro constraints:

L₀ fixes p²: α'p² = 1 − s
 L₁ ~ p · α₁ + ... checks transversality:

$$p^{\nu}\epsilon_{\nu\mu_{2}...\mu_{s}} = 0 \quad \text{or} \quad p \cdot \frac{\delta F_{1}}{\delta \partial X} = 0$$

3. $L_2 \sim \alpha_1 \cdot \alpha_1 + \ldots$ checks tracelessness:

$$\eta^{\nu\sigma}\epsilon_{\nu\sigma\mu_3\dots\mu_s} = 0 \quad \text{or} \quad \frac{\delta^2 F_1}{\delta\partial X \cdot \delta\partial X} = 0$$

Sagnotti, Taronna '10

5 / 24

Building the spectrum 1

- Method 1: light-cone gauge
 - use transverse oscillators α^{i}_{-n}

> non-covariant, leads to superposition or fraction of states

Goddard, Thorn 1972 Goddard, Goldstone, Rebbi, Thorn 1973

see e.g. Blumenhagen, Lüst, Theisen book

Excavating strings

Building the spectrum 2

▶ Method 2: DDF

• scatter k photons, each of momentum $-n_i q$, off of tachyon

$$\Rightarrow \text{ generic state:} \quad \left(\epsilon_k \cdot A_{-n_k}\right) \dots \left(\epsilon_1 \cdot A_{-n_1}\right) e^{i \tilde{p} \cdot X} \quad , \quad N = \sum_{i=1}^{\kappa} n_i$$

where A_{-n}^{μ} : DDF operators, with $A_{-n}^{i} \leftrightarrow \alpha_{-n}^{i}$

• condition on the reference momentum: $\widetilde{p} \cdot q \stackrel{!}{=} 1$

Del Giudice, Di Vecchia, Fubini 1972 Brower 1972 Skliros, Hindmarsh '11

7

• disparate decays of states at very high N, chaos?

Gross, Rosenhaus '21 Rosenhaus '21 Firrotta, Rosenhaus '22 Bianchi, Firrotta, Sonnenschein, Weissman '22-'23

Method 3: construct SO(D-1) irreps from partition function

Forcella, Hanany, J. Troost '10

Main challenge: how do excited states look like?

Visualisation: Regge trajectories

see e.g. Weinberg 1985, Mañes, Vozmediano 1989

beyond the leading Regge, the spectrum seems repetitive

Is there a certain *pattern*?

Is the spectrum concealing a *bigger organizing* symmetry?

What does a state look like?

any state has a polarization depicted by a Young diagram

$$\epsilon^{\mu(s_1), \lambda(s_2), \dots, \nu(s_K)}(p) : \begin{array}{c} s_1 \\ \hline s_2 \\ \hline \\ \vdots \\ \hline \\ s_K \end{array} , \quad s_1 \ge s_2 \ge \dots \ge s_K$$

▶ for *physical* states: *dress* polarization by suitable polynomial

► notation:
$$X_{\mu}^{(k)} \equiv \partial^k X_{\mu}$$
, simplest physical example:
 $F = \epsilon^{\mu(s_1), \lambda(s_2), \dots, \nu(s_K)} X_{\mu_1}^{(1)} \dots X_{\mu_{s_1}}^{(1)} \dots X_{\nu_1}^{(K)} \dots X_{\nu_{s_K}}^{(K)}$
lowest possible level: $N_{\min} = \sum_{i=1}^{K} s_i i$

• leading Regge: 1 row, spin-s at $N = s \Rightarrow$ simplest subexample

CM, Skvortsov '23

Chrysoula Markou

11 / 24

Where does a state appear?

- ▶ there are *infinitely* many ways to render a given diagram physical
- ▶ any state appears at N_{\min} and at higher levels $N = N_{\min} + w$ ⇒ let's call w "depth"
- let's call trajectory a *fixed* number of rows at *fixed* w example: at w = 0, each value of K corresponds to a new trajectory (K = 1: leading Regge)
- example: *shifted* clone of leading Regge that starts at N = 4

trajectory	Young shape	$_{\rm spin}$	N	w	lowest member
leading Regge	8	$s \ge 0$	s	0	•
first "clone"	S	$s \ge 2$	s+2	2	

CM, Skvortsov '23

Let's reorganize the spectrum

 \blacktriangleright instead of N, let's use w to organize the spectrum

- complexity: measured by w (and number of rows)
- remember: finite K for every trajectory!

CM, Skvortsov '23

13 / 24

All trajectories at once

let's consider the most general vertex operator:

$$\mathbb{V}_F(z,p) = F[X^{(1)}, X^{(2)},]e^{ip \cdot X^{(0)}}$$

▶ let's impose $[Q, \mathbb{V}_F(z, p)] = \text{tot. deriv.} \Rightarrow \text{obtain:}$

▶ 1 on-shell condition

$$(L_0 - 1)F = \left(\sum_{n=0}^{\infty} n \, X^{(n)} \cdot \frac{\delta}{\delta X^{(n)}} + \alpha' p^2 - 1\right)F = 0$$

 \triangleright *n* differential constraints

$$L_{n>0}F = \left[2\alpha' \, n! \, i \, p \cdot \frac{\delta}{\delta X^{(n)}} + \alpha' \sum_{m=1}^{m=n-1} m! (n-m)! \frac{\delta^2}{\delta X^{(m)} \cdot \delta X^{(n-m)}} - \sum_{m=0} \frac{(n+m+1)!}{m!} X^{(m+1)} \cdot \frac{\delta}{\delta X^{(n+m+1)}}\right]F = 0$$

▶ now leading Regge is the special case with no descendants

CM, Skvortsov '23

UMONS 14 / 24

A bigger organizing symmetry

▶ let's define the operators

$$T^k{}_l \equiv X^{(k)} \cdot \frac{\delta}{\delta X^{(l)}} \quad , \quad T_{kl} \equiv \frac{\delta^2}{\delta X^{(k)} \cdot \delta X^{(l)}} \quad , \quad T^{kl} \equiv X^{(k)} \cdot X^{(l)}$$

which check Young symmetry & tracelessness

$$T^{k}{}_{l}F = 0 \quad (k < l) \quad , \quad T_{kl}F = 0$$

and act on the k indices, whose range is *infinite*

► {
$$T^k_l, T_{kl}, T^{kl}$$
} form $sp(2\bullet) \Rightarrow$ Howe dual to $so(D-1, 1)$
for the duality of commuting algebras see

idea: use this *bigger* symmetry to construct trajectories CM, Skvortsov '23

▶ simplification: transverse subspace is sufficient ⇒ p appears only within the transverse metric

see e.g. Mañes, Vozmediano 1989

Howe 1989

A bigger organizing symmetry

let's rewrite our constraints as

$$(L_0 - 1)F = \left(\sum_{n=0} n T^n{}_n + \alpha' p^2 - 1\right)F = 0$$

$$L_{n>0}^{\perp}F = \left[\alpha'\sum_{m=1}^{n-1} m!(n-m)! T_{m,n-m}^{\perp} - \sum_{m=0} \frac{(n+m+1)!}{m!} T^{m+1}{}_{n+m+1}\right]F = 0$$

 \blacktriangleright on any function F need only

$$(L_0 - 1)F = 0$$
 , $L_1^{\perp}F = 0$, $L_2^{\perp}F = 0$

Howe duality now implies that:
 the lowest weight states of sp(2•) solve the Virasoro constraints
 example: w = 0

$$F = \epsilon^{\mu(s_1), \, \lambda(s_2), \dots, \, \nu(s_K)} \, X^{(1)}_{\mu_1} \dots X^{(1)}_{\mu_{s_1}} \dots X^{(K)}_{\nu_1} \dots X^{(K)}_{\nu_{s_K}}$$

CM, Skvortsov '23

Building the spectrum: a new technology

• can distinguish 2 kinds of embeddings: "principal" (w = 0) and "non-principal" (w > 0)

▶ idea: use $sp(2\bullet)$ creation operators to construct *deeper* trajectories

$$F^{f}_{w>0} \equiv f(T^{mn}_{\perp}, T^{k}_{l}) F_{w=0} \quad , \quad k>l \, ,$$

where f: trajectory-shifting operator of weight w

• example: take leading Regge (w = 0)

$$F \equiv \epsilon^{a(s)} X_{a(s)}^{(1)} \quad , \quad T_{11}^{\perp} F = 0$$

and dress it to create a subleading trajectory at w = 2

$$F^{f} = \left[\frac{\gamma_{1}}{\alpha'}T_{\perp}^{11} + \gamma_{2}T^{3}{}_{1} + \gamma_{3}(T^{2}{}_{1})^{2}\right]F$$
$$\boxed{s} = f \times \boxed{s}$$

CM, Skvortsov '23

UMONS

Building the spectrum: a new technology

• for the trajectory s at w = 2, solve the Virasoro constraints:

$$\Rightarrow \quad \gamma_2 = \gamma_1 \frac{D + 2s - 1}{3s} \quad , \quad \gamma_3 = -\gamma_1 \frac{D + 2s - 1}{2(s - 1)}$$

1 free parameter (other than spin) spin is not fixed \Rightarrow full trajectory is known!

▶ singularity at $s \rightarrow 1$: determines lightest member–state

- example: the lightest member–state \square of the clone $F_B = B_{\mu\nu} i\partial X^{\mu} i\partial X^{\nu}$ $F_{\tilde{B}} = \tilde{B}_{\mu\nu} \left[-\frac{3}{\alpha'} i\partial X^{\mu} i\partial X^{\nu} i\partial X^{\kappa} i\partial X_{\kappa} + 29 i\partial X^{\mu} i\partial^3 X^{\nu} - 87 i\partial^2 X^{\mu} i\partial^2 X^{\nu} \right]$
- ▶ amplitudes accessible! e.g. scattering of tachyon off a spin-s $\mathcal{A}_{w=2}^{s00} \sim \mathcal{A}_{w=0}^{s00} (-D + 4s + 31) \sim (p_2 \cdot \epsilon)^s (-D + 4s + 31)$

CM, Skvortsov '23

Building the spectrum: a new technology

▶ 2–row example:

Ι	7 =	$\epsilon^{\mu(s_1),\nu(s_2)}X$	$X_{\mu_1}^{(1)} \dots X_{\mu_{s_1}}^{(1)} X$	$^{(2)}_{\nu_1}\ldots X^{(2)}_{\nu_{s_2}}$	
$\begin{array}{c} f_{w=1} & \vdots \\ f_{w=2} & \vdots \end{array}$	$T^{2}{}_{1}, T^{11}_{\perp},$	${T^3}_2 ({T^2}_1)^2, T^2$	$^{2}{}_{1}T^{3}{}_{2}, T^{3}{}_{2}$	$T^{3}{}_{2}, T^{3}{}_{1},$	$T^4{}_2$
Young shape	w	N	possible f	# of free	lightest
			terms	parameters	member
	0	$s_1 + 2s_2$	terms trivial	parameters 1	member
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0 1	$s_1 + 2s_2$ $s_1 + 2s_2 + 1$	terms trivial 2	parameters 1 1	

 $\blacktriangleright multiplicity = number of free parameters (other than spin)$

• other deep trajectories available

CM, Skvortsov '23

UMONS

Is the *complete* spectrum within reach?

What can the complete spectrum teach us about fields and strings and, ultimately, about quantum gravity?

Other examples of subleading states

let's look at massive spin-2 superstring states in 4D

lightest such brane state: leading

$$V_{M,{
m open}}^{(-1)}(z,p) = g_o \ T^a \ e^{-\phi} \ M_{\mu\nu} \ \partial X^{\mu} \psi^{\nu} \ e^{ipX} \quad , \quad p^2 = -\frac{1}{\alpha'}$$

(some of the) lightest such bulk states: subleading

$$V^{(-1,-1)}_{M,{\rm closed}}(z,\overline{z},k) = g_{\rm c} \, e^{-\phi-\widetilde{\phi}} \, M_{\mu\nu} \, \mathcal{J} \, \widetilde{\mathcal{J}} \, \psi^{\mu} \, \widetilde{\psi}^{\nu} \, e^{ik\cdot X} \quad , \quad k^2 = -\frac{4}{\alpha'}$$

 \Rightarrow mimics graviton but is not highest spin of supermultiplet (\mathcal{J} : Kac–Moody current due to compactification)

can compute e.g. 3-point string amplitudes bulk massive spin-2: manifest *double copy* structure

Lüst, CM, Mazloumi, Stieberger '21, '23

Other examples of subleading interactions

 ∃ consistent *field* theory of massless and massive spin−2 states:
 bimetric theory around flat backgrounds
 (kinetic term for massive spin−2: Einstein−Hilbert)

de Rham, Gabadadze, Tolley '10 Hassan, Rosen '11

Hassan, Schmidt-May, von Strauss '12

Babichev, Marzola, Raidal, Schmidt–May, Urban, Veermäe, von Strauss '16

extract "effective" vertices from our *finite cubic* amplitudes, e.g.:

$$\mathcal{L}_{\mathrm{M3}}^{\mathrm{eff}} = \frac{g_c}{\alpha'} \left\{ y \left[M^3 \right] + 2\alpha' M^{\mu\nu} \left[\partial_\mu M_{\rho\sigma} \partial_\nu M^{\rho\sigma} - x \, \partial_\nu M_{\rho\sigma} \partial^\sigma M^\rho_\mu \right] \right\}$$
$$(x, y) = \left\{ \begin{array}{cc} (2, 0) & \text{if} \quad M_{\mu\nu} & \text{is a bulk state of} \quad \mathcal{N} = \widetilde{4}, \widetilde{8} \\ (3, 1) & \text{if} \quad M_{\mu\nu} & \text{is a brane state} \end{array} \right.$$

 match for bulk state with 1-parameter subfamily of (on-shell, cubic) bimetric theory

Lüst, CM, Mazloumi, Stieberger '21 and '23

curiously same family as:

Bonifacio, Hinterbichler, Joyce, Rosen '17 Momeni, Rumbutis, Tolley '20 and Johnson, Jones, Paranjape '20

Engelbrecht, Jones, Paranjape '22

UMONS 23 / 24

Concluding remarks

▶ massive strings and fields: only cubic level similarities

- ▶ we have a new technology that excavates entire trajectories
 - key observation: Howe duality between $sp(2\bullet)$ and so(D-1,1)
 - idea: use this bigger than the Virasoro symmetry
 - ▶ gearwheel: $sp(2\bullet)$ creation operators

CM, Skvortsov '23

▶ field-theory amplitudes for spinning black holes

Guevara, Ochirov, Vines '18 Maybee, O'Connell, Vines '19

"massive" higher–spin symmetry \Rightarrow 3–point Kerr amplitudes!

Cangemi, Chiodaroli, Johansson, Ochirov, Pichini, Skvortsov '22, '23

leading Regge: no BH features

Pichini, Cangemi '22

Can strings yield Kerr amplitudes? can we treat the *entire* spectrum? chaos? holography?

Sagnotti, Taronna '10 Lüst, CM, Mazloumi, Stieberger '21, '23