

Low Energy calibration **ProtoDUNE-vd and ColdBox**

Emile LAVAUT 01/12/23

DEEP UNDERGROUND NEUTRINO EXPERIMENT

Laboratoire de Physique des 2 infinis Irène Joliot-Curie

1. Why do we need low energy calibration ?

Figure from arXiv:1205.6003 [astro-ph.IM]

To detect Galactic Supernova Burst

- Multi-messenger Astrophysic → MeV neutrinos 2nd messenger after GW (early moment of BH formation)
- New physics (complex MSW, selfinteracting neutrinos ...)
- Other (solar neutrino, dark matter ...) \bullet

2. How do we calibrate ?

- Ar39 Signal
 - Q-value of 565 keV
 - Good statistic for 10 kton scale LArTPC experiments $\rightarrow A = 1Bq/kg$
 - FD-VD $\rightarrow \sim 10^7$ decay/s
 - PD-HD/VD $\rightarrow \sim 10^5$ decay/s
 - Coldbox VD $\rightarrow \sim 10^3$ decay/s
 - Point-like events
- Other signals like stopping muons

argon," Nucl. Instr. and Meth.A 574, (2007) 83

3. Selection Principle

- Selection algorithm : search for single and isolated collection hits
 - Single : Cluster with Multiplicity =1
 - Isolated : Hit alone in a centred rectangle of 3 channels x 40 tick-times $(\sim 3 \text{ cm} \times 3 \text{ cm} \text{ cube})$
 - \sim Coincidence : impose to have 2 other hits (ind1 + ind2) in a 20 tick**times** window (no geometry consideration)

4. Simulated Argon 39 - Noise level

- Simulation (100 events) with **2 noise levels** :

In ColdBox VD

5. Selection on Ar39 simulation

- With **SN**
- Selection single hits + isolated + 2 coincidences \rightarrow 98.2 % of hits pass

6. Extended Models - Cosmic

• Prototype : surface detectors \rightarrow suppression of cosmics background \sim 95 %

#occurences/(800 electrons)

6. Extended Models - Cosmics + Radiologicals

- Prototype : surface detectors \rightarrow suppression of cosmics background \sim 95 %
- Different radiological (K40, Co60, Rn222, Kr85 ...) \rightarrow focus only K40 (main contamination)

• With :
$$r_{th} = \frac{39_{Ar}}{39_{Ar} + 40_{K}} = 0.9$$

r_{th} do not take efficiency into account

7. Spectrum - Selection

- Run 1727 CRP3 ColdBox
- Suppression of cosmics

• Remaining hits after selection : 4,7 % \rightarrow 7 × 10⁶ selected hits • Expected Ar39 decays for the 51 min long run $\rightarrow 7.7 \times 10^{6}$

Impact of Recombination and Resolution

1. Recombination

 R is modelling the immediate « reattachment » of ionisation induced electrons with the nearby ions *

•
$$Q_{recomb}^{\{\#e^{-}\}} = \mathbb{R} \times Q_{true}^{\{\#e^{-}\}} = \mathbb{R} \times \frac{E_{dep}^{\{eV\}}}{W_{ion}^{\{eV\}}}$$

 Two empiric models: Birks(not used here) and Modified box model

$$R(\alpha,\beta) = \frac{ln\left(\frac{dE}{dx} \times \frac{\beta}{\rho E_f} + \alpha\right)}{\frac{dE}{dx} \times \frac{\beta}{\rho E_f}}$$

*arXiv:1306.1712v1 [physics.ins-det] 7 Jun 2013

** Acciarri et al., « A Study of Electron Recombination Using Highly Ionizing Particles in the ArgoNeuT Liquid Argon TPC »
 ¹¹
 *** DUNE Collaboration et al., « Identification and Reconstruction of Low-Energy Electrons in the ProtoDUNE-SP Detector »

- With $\rho = LAr$ density $E_f = Electric$ field norm $\alpha, \beta = parameters$
- Actual value of $\alpha = 0.93 \pm 0.02$ and $\beta = 0.2 \pm 0.02$ from Argoneut (proton and deuton)**
- Also measured with Michel e⁻ in PDSP ***

2. Fit Ar39 + K40 raw spectrum on Data

Poor agreement Data/MC

3. Recombination Map

- 56 Ar39 MC spectrum $\neq (\alpha, \beta)$
- Fitted on ColdBox data

• $(\alpha, \beta)_{\text{best fit}} = (0.97, 0.05)$ $\neq (\alpha, \beta)_{\text{Argoneut}} = (0.93, 0.2)$

4. Recombination Fit

Better fit by adjusting recombination

- but:
 - poor shape agreement (new effect ?)
 - Too much K40
 - Best fit (α, β) not expected

5. Recombination Ar39 only + Resolution

- New effect \rightarrow resolution

Fit both resolution and recombination

- Convolution with resolution function with $\sigma = \varsigma \times \sqrt{E} + \sigma_0$, ς is fitted

6. Recombination Ar39 + K40 + Resolution

Better shape agreement

7. Resolution impact Ar39 + K40

- Similar agreement but better resolution
- Need to fit recombination and resolution on Ar39 and K40

ution Solution on Ar39 and K40

Conclusion

- See decays compatible with Ar39 spectrum in ColdBox-VD data
- <u>Analysis improvements:</u>
 - Combined analysis with resolution and recombination effects on both K40 and **Ar39**
 - Maybe noise levels too good in LArSoft \rightarrow effect on energy resolution Improved coincidence module at low energy

 - Root macro \rightarrow LArSoft Module
- Analysis on PD-HD (PD-VD) to be pursued (less boundary effects) • Better understanding of recombination and its models

1. Spectrum - Selection

- Zoom in the region interest
- A bump appears at 8000 $e \rightarrow 250 290 \text{ keV}$ (with R~0.66)

2. Limitation - Cut ?

Spatial distribution → divide stat. by 10 But some effect due to cathode/anode geom.

Same R distribution and mean as in Protodune-sp paper $\rightarrow R \sim 0.67$

DUNE Collaboration et al., « Identification and Reconstruction of Low-Energy Electrons in the ProtoDUNE-SP Detector »

4. Extended Models - Cosmic

• Lots of low energy hits around tracks \rightarrow good suppression

#occurences

3. Other effect : Electron lifetime

- linked to purity of LAr $\rightarrow \tau_e \text{ [ms]} \approx 300/[O_2]_{eq} \text{ [ppt]}$
- we want $\tau_e \gtrsim 5 \times \tau_{drift}$ with $\tau_{drift} \simeq 4$. VD (and 0.1 ms for ColdBox)

0.8 ms is the measured lifetime in ColdBox

Before reconstruction and detector response

#occurences/(10 MeV)

$OO/[O_2]_{eq}$ [ppt]

• we want $\tau_e \gtrsim 5 \times \tau_{drift}$ with $\tau_{drift} \simeq 4.3$ ms for FD-VD and $\tau_{drift} \simeq 2.1$ ms for PD-

 Field response extends up to ~15 cm before the anode hence no electron lifetime effect taken into account in this volume

