

The confrontation between the muon magnetic moment and the Standard Model: recent results and perspectives

Michel Davier

Laboratoire Irène Joliot-Curie (IJCLab) – CNRS/IN2P3 et Université Paris-Saclay

LPNHE seminar March 25, 2024

The electron g-2 early history

- Dirac's relativistic theory of the electron (1928) naturally accounted for quantized particle spin, and described elementary spin-1/2 particles (and their anti-particles)
- In the classical limit, one finds the Pauli equation with a magnetic moment:

 $\vec{\mu} = -g_e \frac{e}{2m_e} \vec{S}$ with $|g_e| = 2$ is the gyromagnetic factor

- Dirac's prediction confirmed to 0.1% by Kinsler & Houston in 1934 studying the Zeeman effect in neon. Deviation from $g_e = 2$ established by Nafe, Nels & Rabi in 1947 by comparing the hyperfine structure of hydrogen and deuterium spectra
- First precision measurement of $g_e=2.00238\pm0.00010$ by Kusch & Foley in 1947 using Rabi's atomic beam magnetic resonance technique

Why measure the muon g-2?

- 3 families of fermions (leptons and quarks) with universal coupling strengths to electroweak interactions
- The 3 charged leptons I = (e, μ , τ) differ only by their own leptonic quantum numbers and their masses $m_e = 0.511 \text{ MeV}$ $m_u = 105.7 \text{ MeV}$ $m_\tau = 1776.9 \text{ MeV}$
- e stable, μ and τ are unstable and decay through the weak interaction with lifetimes 2.2 μ s and 390 fs
- sensitivity of a_l to new physics at energy scale Λ goes like m_l^2 / Λ^2
- Muon more sensitive by large factor $(m_{\mu}/m_{e})^{2} \sim 43000$, but measurement limited by short lifetime
- Measurement for τ lepton not practical at the moment

Principle of muon g-2 measurement (CERN 1960-80)

- spin orientation $\bar{\nu}_{\mu} \leftarrow \pi^- \rightarrow \mu_{\text{polarized}}^-$ 1. Parity violation polarizes muons in pion decay Momentum Polarized μ Spii Very uniform magnetic field 2. Anomalous frequency proportional to a_{μ} Storage ring Focusing with electrostatic \odot^{B} quadrupoles $\vec{\omega}_a = \frac{e}{m_{\mu}c} \left| a_{\mu}\vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \vec{\beta} \times \vec{E} \right| \approx \frac{e}{m_{\mu}c} a_{\mu}\vec{B}$ 3. Magic γ to cancel $\beta \times E$ effect: $P_{\mu} = 3.09 \text{ GeV/c}$
- 4. Again parity violation in muon decay

$$\mu_{\rm polarized}^- \rightarrow e^- + \bar{\nu}_e + \nu_\mu$$

fast electron emitted in direction opposite to muon spin

Double miracle by virtue of P violation !

Time

4

Muon g-2 measurement (Brookhaven 1990-2006)

Observed positron rate in successive 100 $\ensuremath{\mu s}$ periods

~150 polarisation rotations during measurement period

$\omega_a \approx \frac{e}{m_\mu c} \frac{a_\mu B}{a_\mu B}$

obtained from time-dependent fit

$$t) = N_0 e^{-t/\gamma \tau} [1 - A \cdot \sin(\omega_a t - \phi)]$$

In blue: fit parameters

B field measured with Hall probes with RMN frequency as reference

 \Rightarrow a_µ obtained as ratio of 2 frequencies (double blind analysis)

N(

The muon g-2 Fermilab experiment (2018-2025)

• Brookhaven experiment limited by statistics, systematic effects well understood, could be improved with more intense (x 20) and pure muon beam at Fermilab

Muon g-RING

- Goal: reduce final uncertainty by a factor of 4 (over several years)
- Enlarged collaboration
- Experiment completely redesigned (beam instrumentation, detectors, electronics), only superconducting magnet kept and shipped

Theoretical prediction for a

Theoretical prediction for a_u : QED

Known to 5 loops, good convergence, diagrams with internal electron loops enhanced:

$$a_{\mu}^{\text{QED}} = \frac{\alpha}{2\pi} + A_2 \left(\frac{\alpha}{\pi}\right)^2 + A_3 \left(\frac{\alpha}{\pi}\right)^3 + A_4 \left(\frac{\alpha}{\pi}\right)^4 + A_5 \left(\frac{\alpha}{\pi}\right)^5$$

 $A_2 A_3$ known analytically, $A_4 A_5$ obtained with Monte Carlo techniques, partially checked analytically for A_4 Aoyama, Hayakawa, Kinoshita, Nio (2012-2019)

 α = 137.035 999 046 (27) from Cs recoil (Mueller et al., Berkeley, 2018)

 α = 137.035 999 206 (8) from Rb recoil (Morel et al., LKB Paris, 2020)

I(d)

I(e)

I(c)

I(b)

Theoretical prediction for a_{μ} : EW, hadronic light-by-light

• EW: one-loop + two-loop involving W, Z bosons (little sensitivity to Higgs boson mass)

 $a_{\mu}^{EW} = 153.6 (1.0) \times 10^{-11}$

shows level of sensitivity of a_{μ} to physics at large mass scales ~ O(0.1 TeV)

Precision at low energies ⇔ high energy frontier

 Hadronic light-by-light: α³ contribution not computable by analytical QCD; so far only estimated by phenomenological models using intermediate particles; new approach partly using experimental data (2017); also first results from QCD lattice simulations (2019)

small contribution

$$a_{\mu}^{HLbL} = 94 (19) \times 10^{-11}$$

Theoretical prediction for a_u : Hadronic Vacuum Polarization

Dominant uncertainty for the theoretical prediction from HVP part which cannot be calculated from QCD (low mass scale), but one can use experimental data on $e^+e^- \rightarrow$ hadrons cross section

Hadronic Vacuum Polarization (DHMZ group)

- HVP has been for long and still now the largest contribution to the uncertainty of the a_u prediction in the SM
- Limited by the accuracy of e+e- experimental data
- DHMZ group (MD, Andreas Hoecker, Bogdan Malaescu, Zhiqing Zhang) involved since 1997 (τ data ALEPH)
- Result used as reference for the Brookhaven experiment: comparison revealed a deficit in the prediction at ~ 2-3 σ level, hence our motivation to continue this effort toward a more precise prediction
- Main contributions to data treatment
 - Compilation of existing data for e+e- annihilation to obtain R as a sum of exclusive processes
 - Robust combination techniques taking into account all correlated uncertainties as function of energy, between exclusive channels, and between experiments
 - Correct for unmeasured processes using isospin constraints
 - > Determine energy regions where perturbative QCD calculations are safe (experience with τ physics)
- Launched a dedicated program of e+e- cross section measurements using the BABAR detector (SLAC) to get more
 precise data (2001-2014) with the new Initial State Radiation (ISR) method. A new phase is still underway.
- Same data and techniques used to study the running of α (energy) from α (0) to α (M_z) \Rightarrow prediction for M_{Higgs}
- Double role as phenomenologists and experimenters

Measurements of $\sigma(e^+e^- \rightarrow hadrons)$

1. The scan method: e.g. CMD-2/3, SND at Novosibirsk

- ➤ Advantages:
 - ➤ Well defined Vs
 - > Good energy resolution $\sim 10^{-3}$ Vs
- ➤ Disadvantages:
 - ≻ Energy gap between two scans
 - ➤ Low luminosity at low energies
 - \succ Limited Vs range of a given experiment
- 2. The ISR approach: e.g. BaBar, KLOE, BES, CLEOc
 - ➤ Advantages:
 - Continuous cross section measurement over a broad energy range down to threshold
 - ➤ large acceptance for hadrons if ISR detected at large angle
 - $\succ \sigma$ (e⁺e⁻ → hadrons) may be measured over σ (e⁺e⁻ → $\mu^+\mu^-$) thus reducing some syst uncertainties
 - ➤ Disadvantages:
 - \succ Requires high luminosity to compensate higher order in α

s'=(1-x)/s $x=2E_{\gamma}/Vs$

Different energy regions for R(s)

• [$\pi^0\gamma$ threshold-1.8GeV]

- sum about 22→40 exclusive channels
- estimate unmeasured channels using isospin relations (now < 0.1%)

• [1.8-3.7] GeV

- good agreement between
 data and pQCD calculation
 → use 4-loop pQCD
- J/ψ, ψ(2s): Breit-Wigner integral

• [3.7-5] GeV use data

• >5GeV

use 4-loop pQCD calculation

The dominant channel : $e^+e^- \rightarrow \pi^+ \pi^-(\gamma)$

Besides our team for the dominant $\pi^+\pi^-$ and K⁺K⁻ cross sections, other BABAR groups have taken the lead to measure the rest of exclusive cross sections (altogether ~ 40 processes)

 \Rightarrow complete and precise reconstruction of R below 2 GeV

Consistency between experimental data

- Latest dispersive evaluations rely on a rather complete set of measurements of $e^+e^- \rightarrow$ hadrons up to 6π , $\eta 4\pi$, KK 2π in all charge configurations, and a few more higher-multiplicity processes
- A significant discrepancy occurs in the $\pi^+\pi^-$ channel between the 2 most precise results (BABAR and KLOE)
- Taking into account the BABAR/KLOE disagreement in the combination, all experiments are in agreement within an enlarged combination uncertainty (0.7%), already a remarkable result given different experimental conditions: ISR (10.6 GeV BABAR, ~4 GeV BES CLEOc, 1.02 GeV KLOE), direct scan (CMD-2, SND)

All contributions (DHMZ19)

Channel	$a_{\mu}^{ m had,\ LO}[10^{-10}]$	$\Deltalpha(m_Z^2)[10^{-4}]$	
$\pi^0\gamma$	$4.29 \pm 0.06 \pm 0.04 \pm 0.07$	$0.35 \pm 0.00 \pm 0.00 \pm 0.01$	
$\eta\gamma$	$0.65\pm 0.02\pm 0.01\pm 0.01$	$0.08\pm 0.00\pm 0.00\pm 0.00$	
$\pi^+\pi^-$	$507.80 \pm 0.83 \pm 3.19 \pm 0.60$	$34.49 \pm 0.06 \pm 0.20 \pm 0.04$	
$\pi^+\pi^-\pi^0$	$46.20 \pm 0.40 \pm 1.10 \pm 0.86$	$4.60\pm 0.04\pm 0.11\pm 0.08$	
$2\pi^+2\pi^-$	$13.68 \pm 0.03 \pm 0.27 \pm 0.14$	$3.58 \pm 0.01 \pm 0.07 \pm 0.03$	
$\pi^+\pi^-2\pi^0$	$18.03 \pm 0.06 \pm 0.48 \pm 0.26$	$4.45 \pm 0.02 \pm 0.12 \pm 0.07$	
$2\pi^+2\pi^-\pi^0~(\eta~{ m excl.})$	$0.69 \pm 0.04 \pm 0.06 \pm 0.03$	$0.21\pm 0.01\pm 0.02\pm 0.01$	
$\pi^+\pi^-3\pi^0~(\eta~{ m excl.})$	$0.49 \pm 0.03 \pm 0.09 \pm 0.00$	$0.15\pm 0.01\pm 0.03\pm 0.00$	
$3\pi^+3\pi^-$	$0.11 \pm 0.00 \pm 0.01 \pm 0.00$	$0.04\pm 0.00\pm 0.00\pm 0.00$,
$2\pi^+2\pi^-2\pi^0 \ (\eta \text{ excl.})$	$0.71 \pm 0.06 \pm 0.07 \pm 0.14$	$0.25 \pm 0.02 \pm 0.02 \pm 0.05$	(
$\pi^+\pi^-4\pi^0 \ (\eta \text{ excl., isospin})$	$0.08\pm 0.01\pm 0.08\pm 0.00$	$0.03\pm 0.00\pm 0.03\pm 0.00$	```
$\eta\pi^+\pi^-$	$1.19\pm 0.02\pm 0.04\pm 0.02$	$0.35\pm 0.01\pm 0.01\pm 0.01$	
$\eta\omega$	$0.35\pm 0.01\pm 0.02\pm 0.01$	$0.11\pm 0.00\pm 0.01\pm 0.00$	
$\eta\pi^+\pi^-\pi^0(ext{non-}\omega,\phi)$	$0.34 \pm 0.03 \pm 0.03 \pm 0.04$	$0.12\pm 0.01\pm 0.01\pm 0.01$	F
$\eta 2\pi^+ 2\pi^-$	$0.02 \pm 0.01 \pm 0.00 \pm 0.00$	$0.01 \pm 0.00 \pm 0.00 \pm 0.00$	
$\omega\eta\pi^0$	$0.06 \pm 0.01 \pm 0.01 \pm 0.00$	$0.02 \pm 0.00 \pm 0.00 \pm 0.00$	r
$\omega\pi^0~(\omega ightarrow\pi^0\gamma)$	$0.94\pm 0.01\pm 0.03\pm 0.00$	$0.20\pm 0.00\pm 0.01\pm 0.00$	I
$\omega(\pi\pi)^0~(\omega o\pi^0\gamma)$	$0.07\pm 0.00\pm 0.00\pm 0.00$	$0.02 \pm 0.00 \pm 0.00 \pm 0.00$	
$\omega \; ({ m non-} 3\pi, \pi\gamma, \eta\gamma)$	$0.04\pm 0.00\pm 0.00\pm 0.00$	$0.00 \pm 0.00 \pm 0.00 \pm 0.00$	C
K^+K^-	$23.08 \pm 0.20 \pm 0.33 \pm 0.21$	$3.35 \pm 0.03 \pm 0.05 \pm 0.03$	
$K_S K_L$	$12.82\pm 0.06\pm 0.18\pm 0.15$	$1.74\pm 0.01\pm 0.03\pm 0.02$	r
$\phi \; ({ m non-} K\overline{K}, 3\pi, \pi\gamma, \eta\gamma)$	$0.05 \pm 0.00 \pm 0.00 \pm 0.00$	$0.01 \pm 0.00 \pm 0.00 \pm 0.00$	
$K\overline{K}\pi$	$2.45 \pm 0.05 \pm 0.10 \pm 0.06$	$0.78 \pm 0.02 \pm 0.03 \pm 0.02$	
$K\overline{K}2\pi$	$0.85\pm 0.02\pm 0.05\pm 0.01$	$0.30\pm 0.01\pm 0.02\pm 0.00$	
$K\overline{K}3\pi$ (estimate)	$-0.02\pm0.01\pm0.01\pm0.00$	$-0.01\pm0.00\pm0.00\pm0.00$	
$\eta\phi$	$0.33 \pm 0.01 \pm 0.01 \pm 0.00$	$0.11\pm 0.00\pm 0.00\pm 0.00$	
$\eta K \overline{K} \pmod{\phi}$	$0.01 \pm 0.01 \pm 0.01 \pm 0.00$	$0.00\pm 0.00\pm 0.01\pm 0.00$	
$\omega K \overline{K} \; (\omega ightarrow \pi^0 \gamma)$	$0.01 \pm 0.00 \pm 0.00 \pm 0.00$	$0.00\pm 0.00\pm 0.00\pm 0.00$	
$\omega 3\pi ~(\omega ightarrow \pi^0 \gamma)$	$0.06 \pm 0.01 \pm 0.01 \pm 0.01$	$0.02 \pm 0.00 \pm 0.00 \pm 0.00$	
$7\pi (3\pi^+ 3\pi^- \pi^0 + \text{estimate})$	$0.02\pm 0.00\pm 0.01\pm 0.00$	$0.01 \pm 0.00 \pm 0.00 \pm 0.00$	
J/ψ (BW integral)	6.28 ± 0.07	7.09 ± 0.08	
$\psi(2S) \; ({ m BW \; integral})$	1.57 ± 0.03	2.50 ± 0.04	
R data [3.7 - 5.0] GeV	$7.29 \pm 0.05 \pm 0.30 \pm 0.00$	$15.79 \pm 0.12 \pm 0.66 \pm 0.00$	
$R_{\rm QCD} [1.8 - 3.7 {\rm GeV}]_{uds}$	$33.45 \pm 0.28 \pm 0.65_{ m dual}$	$24.27 \pm 0.18 \pm 0.28_{ m dual}$	
$R_{ m QCD} \left[5.0 - 9.3 \ { m GeV} ight]_{udsc}$	6.86 ± 0.04	34.89 ± 0.17	D
$R_{\rm QCD} \left[9.3 - 12.0 \text{ GeV}\right]_{udscb}$	1.21 ± 0.01	15.56 ± 0.04	
$R_{ m QCD} [12.0 - 40.0 { m GeV}]_{udscb}$	1.64 ± 0.00	77.94 ± 0.12	
$R_{ m QCD} [> 40.0 \ { m GeV}]_{udscb}$	0.16 ± 0.00	42.70 ± 0.06	
$R_{\rm QCD} [> 40.0 \ {\rm GeV}]_t$	0.00 ± 0.00	-0.72 ± 0.01	
Sum	$693.9 \pm 1.0 \pm 3.4 \pm 1.6 \pm 0.1_{\psi} \pm 0.7_{ m QCD}$	$275.42 \pm 0.15 \pm 0.72 \pm 0.23 \pm 0.09_{\psi} \pm 0.55_{\rm QCD}$	

40 exclusive channels (<1.8 GeV) evaluated

Estimation for missing modes based on isospin constraints becomes negligible (0.016%)

DHMZ EPJC 80 (2020) 241

The g-2 theory initiative (2017-2020)

- By 2012, prediction using more precise e+e- data confirmed the discrepancy with the Brookhaven measurement, reaching ~ 3.5 σ
- In view of forthcoming results from the new g-2 direct experiment at Fermilab, a concerted effort was organized to try to produce the most reliable prediction ahead of time (blind to the new result)
- Organized 6 workshops followed by ~ 130 physicists (many lattice QCD theorists)
- Progress in hadronic LbL calculations with phenomenological and lattice methods, uncertainty reduced
- For HVP
 - > lattice groups very active, but could not produce a reliable and competitive result
 - the dispersive approach based on data was adopted: results of 2 groups used (DHMZ and KNT) with the DHMZ conservative approach of estimating uncertainties prevailing
- Comprehensive report (166 pages) ready early 2020 and published in Physics Reports, well before the Fermilab release

The g-2 theory initiative prediction (WP2020)

HVP

HLbL

The muon g-2 Fermilab run 1 result (2021)

 a_{μ} (Fermilab) = 116 592 040 (50)_{stat} (23)_{syst} × 10⁻¹¹

- Agreement with Brookhaven value
- Precision comparable
- Excess / SM prediction increased to 4.2σ
- Caution about significance:
 - statistics-dominated measurement
 - prediction uncertainty limited by systematic effects (not Gaussian)
- Nevertheless, large discrepancy (the largest so far between measurement and SM anywhere)

New developments since 2020-1 (WP and run 1 FNAL)

- First precise HVP result using lattice QCD (BMW collaboration, 2021) in disagreement with dispersive approach
- Confrontation with other lattice groups, still going on (1) no new full result yet (2) comparison in reduced regions where uncertainties are smallest (intermediate window in Euclidean time)
- New (2023) precise measurement of $e^+ e^- \rightarrow \pi^+ \pi^-$ at Novosibirsk (CMD-3) in disagreement with all previous results (KLOE, BABAR, CMD-2....), consistent with no discrepancy with direct g-2 result
- Update (2023) from g-2 measurement in Fermilab (runs 2/3): precision increased $\times 2$, consistent with run 1
- DMZ and BMW collaborating to localize the energy regions where differences data-driven/lattice occur
- Dedicated study by BABAR (2023) of additional radiation in ISR processes $e^+ e^- \rightarrow \mu^+ \mu^- \gamma$, $e^+ e^- \rightarrow \pi^+ \pi^- \gamma$ (LO) with one (NLO) or two (NNLO) photons \Rightarrow consequences for ISR analyses such as KLOE and BESIII
- Re-evaluation (DHLMZ, 2023) of input data in view of strong inconsistencies between experiments, reconsideration of data from hadronic τ decays (DHLMZ = DHMZ + Anne-Marie Lutz)

Purely theoretical approach: QCD on lattice

- Cannot use perturbative QCD calculations because of too-low an energy scale for a_{μ} (Landau pole)
- QCD on space-time lattice: simulations to compute electromagnetic-current two-point function

$$C(t) = rac{1}{3e^2} \sum_{i=1}^3 \int d^3x \, \langle J_i(ec x,t) J_i(0)
angle \qquad C(t) = rac{1}{24\pi^2} \int_0^\infty ds \, \sqrt{s} R(s) \, e^{-|t| \sqrt{s}} \ rac{J_\mu}{e} = rac{2}{3} ar u \gamma_\mu u - rac{1}{3} ar d \gamma_\mu d - rac{1}{3} ar s \gamma_\mu s + rac{2}{3} ar c \gamma_\mu c - rac{1}{3} ar b \gamma_\mu b + rac{2}{3} ar t \gamma_\mu t egin{array}{c} 0 \\ 0 \\ 0 \end{array} egin{array}{c} 0 \\ -\Theta_{ ext{vin}} \end{array}$$

- Beyond QCD: extrapolation to real world lattice spacing $\rightarrow 0$ lattice volume $\rightarrow \infty \pi$ physical mass
- Difficult to compare directly dispersive (timelike) and lattice (spacelike) approaches
- Possibility to consider windows in lattice space
- CPU time-consuming to get statistical accuracy and study variation of lattice parameters, needs large computer resources

First precise lattice calculation: BMW 2021

- Lattice calculations in progress during g-2 Theory Initiative
- Precision not competitive with data-driven dispersive method, not included in WP2020
- Highly publicized release of BMW result (post-final WP report)
 synchronized with run 1 Fermilab announcement
- Confrontation with independent lattice determinations strongly desired, but no result yet for the complete calculation (3 years...)
- Important partial comparisons performed in intermediate window
 0.4-1.5 fm, but it keeps only about 1/3 of HVP contribution
 ⇒ 4 groups in agreement with BMW

CMD-3 2023 2π result

- CMD-3 at VEPP-2000 paper arXiv:2302.08834 letter arXiv:2309.12910 both unpublished yet
- Large statistics accumulated mainly in 2017-2018 (34 M ππ, 3.7 M μμ, 4.4 M ee) allowing for detailed systematic studies
- Two independent methods for channel separation: momentum-based (better at low energy) and energy deposition in calorimeter (better at high energy): overlap of the two methods in the ρ peak region
- $\pi\pi$ cross section disagrees with all previous experiments whether from ISR or scan techniques
- Discrepancy with CMD-2 at VEPP-2M also using calorimetry is not understood and needs to be clarified
- Thorough review organized by the g-2 Theory Initiative
- No major issue identified significantly impacting the results
- Some questions about estimate of systematic uncertainties
- Analysis not blinded (even worse...)

The muon g-2 Fermilab runs 2-3 result (2023)

Run 1 a_{μ} (Fermilab) = 116 592 040 (50) $_{stat}$ (23) $_{syst} \times 10^{-11}$ Runs 2-3 a_{μ} (Fermilab) = 116 592 057 (24) $_{stat}$ (8) $_{syst} \times 10^{-11}$

- Agreement with Brookhaven and run 1 Fermilab values
- Precision × 2
- Systematic uncertainty below final goal
- Excess / WP2020 prediction increases to > 5σ
- Would be wonderful news if not for the confusing situation for the SM prediction
- Still more in store with results from runs 4-6 to come in 2025, another factor of 2 expected
- Clearly the burden of proof is to straighten out the discrepancies between e+e- experiments on the one hand and with lattice on the other hand

Systematic approach to compare data-driven/lattice (2023)

- Collaboration DMZ-BMW arXiv: 2308.04221
- Try to find origin of tensions between dispersive and lattice approaches
- Comparison not trivial: weighted integrals of C(t) for lattice, weighted integrals of R(s) for dispersive
- R to lattice straightforward, lattice to R inverse Laplace transform (ill-posed)
- For the moment few observables available for HVP: a_{μ} , $a_{\mu,window}$, $\Delta\alpha(Q^2)$, important to combine them to get more information, more moments can be considered (correlations)
- Current analysis uses full set of e+e- data as of WP2020
- Detailed work on lattice uncertainties/correlations and uncertainties on them
- Tensions expressed in t (lattice): excess mostly in 0.4-1.5 fm range, small below and above
- Tensions expressed in s (data): deficit mostly in the ρ region
- No significant impact on precision EW fits at the Z scale
- Once differences understood, same framework can be used to combine dispersive and lattice results to improve precision on HVP prediction

Impact of higher order radiation: unique '(N)NLO' BaBar study

- Studied in-situ in BaBar data, using kinematic fits: test the most frequently used Monte Carlo generators Рнокнака: limited to NLO, but full matrix element for ISR and FSR АгкQED: NLO and NNLO, with collinear approximation for additional ISR
 - Large cancellations between hard emission and soft/virtual contributions Generic ISR diagrams

BaBar results on higher order radiation NLO and NNLO

- NLO small-angle ISR in PHOKHARA higher than in data; large-angle ratios consistent with unity
- AFKQED: reasonable description of rate and energy distributions for '(N)NLO' data

- NNLO contributions clearly observed in data (3.5% $E_{\gamma} > 200 \text{ MeV}$)
- BaBar measurements with loose selection incorporate NLO and HO radiation minimizing MC-dependence
- Other ISR measurements select 'LO' topology and rely on PHOKHARA for hard NLO (but not NNLO)
- Impact for KLOE and BESIII needs to be investigated (arXiv:2312.02053)

The new landscape of data dispersive (DHLMZ,2023) (1) Tensions

- The new CMD-3/all and old BABAR/KLOE discrepancies necessitate a re-evaluation of the situation of e+e- data used in the dispersive approach
- Performed new combination of all experiments (+CMD-3, SND2020, updated BESIII) to identify the differences among the most precise experiments
 BABAR VS KLOE BABAR VS CMD-3 CMD-3 VS KLOE

The new landscape of data dispersive (DHLMZ,2023) (2) Impact of NLO/NNLO BABAR study

- BABAR only experiment measuring simultaneously LO/NLO/NNLO ISR processes e⁺ e⁻ → μ⁺ μ⁻ γ / π⁺ π⁻ γ
 ⇒ questioned validity of NLO Phokhara + absence of NNLO
 ⇒ BABAR measurement essentially independent of description of radiation the MC generator
- KLOE and BESIII select LO topology and rely heavily on NLO Phokhara generator to correct for
 ⇒ doubts expressed about validity of their approach
- Performed fast simulations of KLOE and BESIII experimental conditions to check impact of Phokhara shortcomings
 - ⇒ potential biases found at a level larger than quoted systematic uncertainties which could explain the BABAR/KLOE discrepancy
- More realistic tests should be performed by KLOE and BESIII collaborations themselves

The new landscape of data dispersive (DHLMZ,2023)(3) re-consideration of τ hadronic spectral functions

• Precise measurements of τ branching fractions and hadronic spectral functions with ALEPH prompted their use for computing HVP in a_{μ} and $\Delta \alpha(M_Z)$ (Alemany-Davier-Hoecker, 1997)

- In view of discrepancies between KLOE/BABAR/CMD-3 for $\pi\pi$, it is advantageous to reconsider the τ approach
- Re-evaluated $\tau \pi \pi$ contribution agrees with BABAR and CMD-3, not with KLOE

The new landscape of data dispersive (DHLMZ,2023)(4) Comparison of the most precise results

- So far BMW result compared with the combination of all e+e- data. Since there is no agreement between them and some doubts expressed for some, it is interesting to perform the comparison experiment by experiment
- Use $\pi\pi$ contribution from different experiments, all other contributions from WP2020 \Rightarrow full a_{μ} values
- BABAR, CMD-3, τ in fair agreement, average 2.5 σ below Fermilab, contradiction with most precise KLOE value
- BABAR/CMD-3/ τ in good agreement with BMW, average of all 4 results 2.8 σ below Fermilab
- Still a deviation with lattice average for the intermediate window, to be understood

Perpectives

- Short-term efforts on 3 fronts: Fermilab, lattice, new e+e- measurements
- Fermilab: runs 4-5-6 being analyzed, systematics under control, precision statistically limited precision ×2 /runs 1-2-3, final results expected in early 2025
- Lattice: expected results for long- and short-distance windows, full HVP, improvements for HLbL long-distance is the most problematic part to obtain with precision (but 57% of total contribution)
- Data-driven dispersive: several efforts in progress
 - Feedback from past KLOE analyses?
 - Feedback from CMD-2/3 problem
 - SND update with full data
 - > BES III with more statistics, attention to additional radiation
 - > BABAR with full data and independent method separating $\mu\mu/\pi\pi/KK$ without PID, well advanced (DLMZ + Léonard Polat post-doc ANR au LPNHE/IJCLab)
 - \blacktriangleright Belle II for both e+e- and τ
 - > New KLOE analysis of full data, additional radiation?, development of an NNLO generator
 - ➢ In the longer run: MuonE at CERN, very challenging

Summary

- The understanding of the muon g-2 has been a bit chaotic, but remains an exciting and challenging task
- Significant progress on the direct measurement at Fermilab: precision × 2 /previous BNL, goal is × 4
- A large effort was devoted to produce a reliable and conservative theoretical prediction within the Standard Model, culminating in the 2020 WP of the muon g-2 Theory Initiative
- The HVP contribution plays a very important role in the value and accuracy of the prediction
- Our DHMZ group has more than 20 years of experience using the mature dispersive approach based on data from τ decays and e+e- cross sections for which we contributed with innovative methods
- Unfortunately discrepancies among different experiments prevent us from using the full data potential
- The alternative approach using QCD on a lattice is very promising with so far only one result which disagrees with the WP2020 prediction, needing confirmation by other groups
- In the past year many developments occurred: measurement by BABAR of additional radiation up to NNLO with impact on KLOE and BES III analyses
- As a result some clarification seems to be emerging with BABAR, CMD-3, and τ driven estimates being in agreement and also with the lattice calculation, still departing from the Fermilab measurement by about 3σ, however much smaller than using the 2020 prediction.
- The coming year will continue to be exciting...