

The Higgs boson at the LHC: a journey to precision

A. de Wit, 18.01.2024

The Higgs boson

VOLUME 13, NUMBER 16

PHYSICAL REVIEW LETTERS

BROKEN SYMMETRIES AND THE MASSES OF GAUGE BOSONS

Peter W. Higgs

Tait Institute of Mathematical Physics, University of Edinburgh, Edinburgh, Scotland (Received 31 August 1964)

3

VOLUME 13, NUMBER 16

PHYSICAL REVIEW LETTERS

BROKEN SYMMETRIES AND THE MASSES OF GAUGE BOSONS

Peter W. Higgs

Tait Institute of Mathematical Physics, University of Edinburgh, Edinburgh, Scotland (Received 31 August 1964)

Compare:

1935 Mesons theorised

1947 Charged pion discovered

3

VOLUME 13, NUMBER 16

PHYSICAL REVIEW LETTERS

BROKEN SYMMETRIES AND THE MASSES OF GAUGE BOSONS

Peter W. Higgs

Tait Institute of Mathematical Physics, University of Edinburgh, Edinburgh, Scotland (Received 31 August 1964)

Compare: 1935 Mesons theorised

1947 Charged pion discovered

3

VOLUME 13, NUMBER 16

PHYSICAL REVIEW LETTERS

BROKEN SYMMETRIES AND THE MASSES OF GAUGE BOSONS

Peter W. Higgs

Tait Institute of Mathematical Physics, University of Edinburgh, Edinburgh, Scotland (Received 31 August 1964)

Compare:

1935 Mesons theorised

1947 Charged pion discovered

1960s EW theory

1973 Neutral current interactions observed

1983 W and Z boson discovery

3

VOLUME 13, NUMBER 16

PHYSICAL REVIEW LETTERS

BROKEN SYMMETRIES AND THE MASSES OF GAUGE BOSONS

Peter W. Higgs

Tait Institute of Mathematical Physics, University of Edinburgh, Edinburgh, Scotland (Received 31 August 1964)

Compare:

1935 Mesons theorised

1947 Charged pion discovered

1960s EW theory

1973 Neutral current interactions observed

1983 W and Z boson discovery

3

Higgs searches at LEP

 LEP: e+e- collider → main Higgs boson
production mode: ZH

 Collisions at centre-ofmass energies of 189-209 GeV Phys.Lett.B565:61-75,2003

Higgs searches at Tevatron

- Tevatron: ppbar collider. Main production mode: gluon-gluon fusion
- Experimental sensitivity of CDF and DØ dominated by VH, H→bb
- Evidence for H production, July 2nd 2012

The Higgs boson discovery

Phys. Lett. B716 (2012) 1 Phys. Lett. B716 (2012) 30

The Higgs boson discovery

Local p_o **ATLAS** 2011 - 2012 $\sqrt{s} = 7 \text{ TeV}: \int Ldt = 4.6-4.8 \text{ fb}^{-1}$ $\sqrt{s} = 8 \text{ TeV}: \int \text{Ldt} = 5.8-5.9 \text{ fb}^{-1}$ 10^{-2} 10⁻³ 10-10⁻⁵ 10⁻⁶ 10-1 10⁻⁸ 10⁻⁹ **10**⁻¹⁰ **10**⁻¹¹ 130 110 120 125 115

Phys. Lett. B716 (2012) 1 Phys. Lett. B716 (2012) 30

Phys. Lett. B716 (2012) 1 Phys. Lett. B716 (2012) 30

JHEP 08 (2016) 045

The CMS experiment

HADRON CALORIMETER (HCAL) Brass + Plastic scintillator ~7,000 channels

SILICON TRACKERS

Pixel (100x150 μ m) ~16m² ~66M channels Microstrips (80x180 μ m) ~200m² ~9.6M channels

MUON CHAMBERS Barrel: 250 Drift Tube, 480 Resistive Plate Chambers Endcaps: 468 Cathode Strip, 432 Resistive Plate Chambers

PRESHOWER Silicon strips ~16m² ~137,000 channels

FORWARD CALORIMETER Steel + Quartz fibres ~2,000 Channels

The Higgs boson, 11 years after its discovery

- Couplings with bosons
 - Mass
 - Coupling structure
 - Couplings with 3d generation fermions
 - Couplings with 2nd generation fermions

Des questions, des réponses (?)

2. Boosting the Higgs

3. BSM & rare decays

4. Di-Higgs

Disclaimer

• By no means a complete picture!

Trying to (mostly) focus on relatively recent results

 Focusing on results from CMS (consistent with ATLAS) programme!)

Higgs boson analysis strategies

- Target all major decay channels (and some rare ones) + all major production modes
- Need the whole detector: γ,e,µ,τ,b,c,MET...
- Both template-based analyses + functional forms for background
 - Likelihoods!

Brief interlude: unfolding

Figures: K. Cormier

Brief interlude: unfolding

Figures: K. Cormier

Brief interlude: unfolding

Figures: K. Cormier

- (Almost) everything I will show today is unfolded to detector-level (general for Higgs)
- Implicit in likelihood fit
- Sometimes inclusive, sometimes fiducial

Precision Higgs measurements

Model dependence

(Inclusive) signal strength or cross section

cross sections

Data needs

Simplified template

Differential, fiducial measurements

• To satisfy our curiosity!

• To satisfy our curiosity!

arXiv:1310.8361

Model	κ_V	κ_b	κ_γ
Singlet Mixing	$\sim 6\%$	$\sim 6\%$	$\sim 6\%$
$2 \mathrm{HDM}$	$\sim 1\%$	$\sim 10\%$	$\sim 1\%$
Decoupling MSSM	$\sim -0.0013\%$	$\sim 1.6\%$	$\sim4\%$
Composite	$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$
Top Partner	$\sim -2\%$	$\sim -2\%$	$\sim +1\%$

• To satisfy our curiosity!

arXiv:1310.8361

Model	κ_V	κ_b	κ_γ
Singlet Mixing	$\sim 6\%$	$\sim 6\%$	$\sim 6\%$
$2 \mathrm{HDM}$	$\sim 1\%$	$\sim 10\%$	$\sim 1\%$
Decoupling MSSM	$\sim -0.0013\%$	$\sim 1.6\%$	$\sim4\%$
Composite	$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$
Top Partner	$\sim -2\%$	$\sim -2\%$	$\sim +1\%$

• To satisfy our curiosity!

arXiv:1310.8361

Model	κ_V	κ_b	κ_γ
Singlet Mixing	$\sim 6\%$	$\sim 6\%$	$\sim 6\%$
$2 \mathrm{HDM}$	$\sim 1\%$	$\sim 10\%$	$\sim 1\%$
Decoupling MSSM	$\sim -0.0013\%$	$\sim 1.6\%$	$\sim4\%$
Composite	$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$
Top Partner	$\sim -2\%$	$\sim -2\%$	$\sim +1\%$

• To satisfy our curiosity!

arXiv:1310.8361

Model	κ_V	κ_b	κ_γ
Singlet Mixing	$\sim 6\%$	$\sim 6\%$	$\sim 6\%$
$2 \mathrm{HDM}$	$\sim 1\%$	$\sim 10\%$	$\sim 1\%$
Decoupling MSSM	$\sim -0.0013\%$	$\sim 1.6\%$	$\sim4\%$
Composite	$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$
Top Partner	$\sim -2\%$	$\sim -2\%$	$\sim +1\%$

Precision Higgs measurements Why you should care

• To satisfy our curiosity!

arXiv:1310.8361

Model	κ_V	κ_b	κ_γ
Singlet Mixing	$\sim 6\%$	$\sim 6\%$	$\sim 6\%$
$2 \mathrm{HDM}$	$\sim 1\%$	$\sim 10\%$	$\sim 1\%$
Decoupling MSSM	$\sim -0.0013\%$	$\sim 1.6\%$	$\sim4\%$
Composite	$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$
Top Partner	$\sim -2\%$	$\sim -2\%$	$\sim +1\%$

 BSM models predict %-level deviations in couplings → need precision measurements

Precision Higgs measurements Why you should care

• To satisfy our curiosity!

arXiv:1310.8361

Model	κ_V	κ_b	κ_γ
Singlet Mixing	$\sim 6\%$	$\sim 6\%$	$\sim 6\%$
$2 \mathrm{HDM}$	$\sim 1\%$	$\sim 10\%$	$\sim 1\%$
Decoupling MSSM	$\sim -0.0013\%$	$\sim 1.6\%$	$\sim4\%$
Composite	$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$
Top Partner	$\sim -2\%$	$\sim -2\%$	$\sim +1\%$

 BSM models predict %-level deviations in couplings → need precision measurements

:/

HIG-20-001, sub'd to PRD

20

HIG-20-001, sub'd to PRD

Ok, still a lot of background at high p_T →
(1) control regions to help model ttbar, W/
Z+b, W/Z+light

(2) Rely on DNN to increase sensitivity

20

Categorization in different reco-level categories to be able to measure STXS bins

	CN	IS	Sin	nula	tion				
$150 < p_T(V) < 250, = 0J$		0.02	0.44	0.06	0.09	0.00		0.01	
150 < p _T (V) < 250, ≥1J		0.01	0.11	0.30	0.09	0.00		0.01	
$rac{1}{5}$ 250 < $p_{T}(V)$ < 400 (res)			0.06	0.03	0.55	0.05		0.00	
$\frac{1}{10} p_{T}(V) > 400 \text{ (res)}$					80.0	0.74			
$\frac{3}{2}$ 250 < p _T (V) < 400 (boost)			0.00	0.02	0.53	0.11			
$p_{T}(V) > 400 \text{ (boost)}$					0.04	0.79			
$150 < p_T(V) < 250$	0.00	0.01	0.02	0.01	0.00	0.00			
$rac{1}{2}$ 250 < $p_T^{+}(V)$ < 400 (res)			0.00	0.00	0.01	0.00			
to p _⊤ (V) > 400 (res)	_				0.00	0.01			
$\frac{\Psi}{2}$ 250 < p _T (V) < 400 (boost)			0.00	0.00	0.02	0.01			
$p_{T}(V) > 400$ (boost)					0.00	0.01			
$75 < p_{T}(V) < 150$	0.01	0.75	0.01	0.00			0.00	0.22	
150 < p (V) < 250, = 0J		0.01	0.60	0.08	0.00			0.00	
150 < p _⊤ (V) < 250 , ≥1J		0.01	0.13	0.44	0.01		0.00	0.01	
150 < p _T (V) < 250 , ≥1J 등 250 < p _T (V) < 400 (res)		0.01	0.13 0.01	0.44 0.01	0.01 0.73	0.01	0.00	0.01	
$150 < p_T^{(V)} < 250, \ge 1J$ $50 < p_T^{(V)} < 400 \text{ (res)}$ $p_T^{(V)} > 400 \text{ (res)}$		0.01	0.13 0.01	0.44 0.01	0.01 0.73 0.03	0.01 0.84	0.00	0.01	
150 < $p_{T}^{T}(V)$ < 250 , ≥1J 50 < $p_{T}^{T}(V)$ < 400 (res) $p_{T}^{O}(V)$ > 400 (res) $p_{T}^{O}(V)$ > 400 (res) q_{T}^{O} 250 < $p_{T}^{O}(V)$ < 400 (boost)		0.01	0.13 0.01 0.00	0.44 0.01 0.00	0.01 0.73 0.03 0.70	0.01 0.84 0.02	0.00	0.01	
150 < $p_T^{(V)}$ < 250 , ≥1J 50 < $p_T^{(V)}$ < 400 (res) $p_T^{(V)}$ > 400 (res) $p_T^{(V)}$ > 400 (res) $p_T^{(V)}$ < 400 (boost) $p_T^{(V)}$ > 400 (boost)		0.01	0.13 0.01 0.00	0.44 0.01 0.00	0.01 0.73 0.03 0.70 0.02	0.01 0.84 0.02 0.85	0.00	0.01	
150 < $p_{T}^{T}(V)$ < 250 , ≥1J 250 < $p_{T}^{T}(V)$ < 400 (res) $p_{T}^{T}(V)$ > 400 (res) 250 < $p_{T}^{T}(V)$ < 400 (boost) $p_{T}^{T}(V)$ > 400 (boost)		0.01		0.44 0.01 0.00	0.01 0.73 0.03 0.70 0.02			0.01	

HIG-20-001, sub'd to PRD

CMS VH, H→bb

2

0

ZH, p_{_}(V) > 400 GeV

ZH, 250 < p_r(V) < 400 GeV

ZH, 150 < $p_{\tau}(V)$ < 250 GeV, \geq 1J

ZH, 150 < $p_{T}(V)$ < 250 GeV, = 0J

ZH, 75 < p_{_}(V) < 150 GeV

WH, p_{_}(V) > 400 GeV

WH, 250 < $p_{T}(V)$ < 400 GeV

WH, 150 < p_{_}(V) < 250 GeV

HIG-20-001, sub'd to PRD

STXS signal strengths rather than cross sections → include theory uncertainties in systematic component

JHEP 08 (2023) 040

Generally good agreement with MC predictions

Differential measurements

Probability, based on angular like

 $\mathcal{D}_{ ext{alt}}\left(ec{\Omega}
ight) = rac{\mathcal{P}_{ ext{sig}}\left(ec{\Omega}
ight)}{\mathcal{P}_{ ext{sig}}\left(ec{\Omega}
ight) + \mathcal{P}_{ ext{alt}}\left(ec{\Omega}
ight)'}$

JHEP 08 (2023) 040

Boosting the Higgs Why you should care

p⊤ (H) [GeV]

Boosting the Higgs Why you should care

p⊤ (H) [GeV]

Boosting final states - challenges

Boosting final states - challenges

Boosting final states - challenges

p_T ~ O(100 GeV)

p_T ~ O(100 GeV)

p_T ~ O(100 GeV)

Large branching fractions are beneficial to select sufficiently large sample of events!

26

H→bb boosted

 Considering both gluon-gluon fusion and VBF production in the boosted regime (ggF less dominant @ high p_T)

Challenge 1: reconstructing the Higgs boson

CMS-PAS-HIG-21-020

Challenge 2: multijet background

27

H->bb boosted

CMS-PAS-HIG-21-020

H->bb boosted

We also study boosted $H \rightarrow \tau \tau$ - see backup!

CMS-PAS-HIG-21-020

Rare & BSM Higgs decays Why you should care

 The SM's newest particle could be a portal to new physics

 Invisible & 'other' (= not-searched-for final states) decay channels still possible \

Rare decays → room for excesses

Typically: rare means 'small branching fraction and currently limited experimental sensitivity' + 'extremely small branching fractions (O(10⁻³ and smaller)

Typically: rare means 'small branching fraction and currently limited experimental sensitivity' + 'extremely small branching fractions (O(10⁻³ and smaller)

BSM

 Decay channels not allowed in the SM

• e.g. $H \rightarrow invisible^*$, $H \rightarrow light$ (pseudo)scalars

*H \rightarrow ZZ \rightarrow 4v is of course an SM process...

(Super) rare decays

- Host of possible channels, e.g $H \rightarrow \psi(nS)\gamma$ (recent result)
- B ~ O(10⁻⁶)
- Charmed meson → possible handle on H-charm coupling

BSM decays: H→invisible 4.9 fb⁻¹ (7 TeV), 19.7 fb⁻¹ (8 TeV), 140 fb⁻¹ (13 TeV) 10^{-38} σ^{SI}_{DM-nucleon} (cm²) CMS 90% CL limits 10 $B(H \rightarrow inv) < 0.14$ 10^{-40} **Higgs portal models** 10^{-41} Majorana fermion DM 10⁻⁴² • Scalar DM 10⁻⁴³ ⊧ Η Vector DM $^{\rm UV\text{-}comp}$ 10^{-44} Vector DM $m_2 = 100 \text{ GeV}$ $\overline{\chi}$ 10⁻⁴⁵ ⊧ Vector DM $_{m_2 = 65 \text{ GeV}}^{\text{radiative}}$ q **10**⁻⁴⁶ q' Higgs physics @ LHC and 10^{-47} A A A A A A A A A A A non-collider experiments join 10⁻⁴⁸ ⊧ **Direct-detection** forces! **CRESST-III 10**⁻⁴⁹ ⊨ DarkSide-50 •••• PandaX-4T 10^{-50} **LUX-ZEPLIN** 10^{-5} 10² 10 10 $m_{\rm DM}$ (GeV)

"Invisible": escape CMS undetected \rightarrow missing energy

H+something: helpful for trigger (+ backgrounds)

EPJC 83 (2023) 933

Di-Higgs production Why you should care

Shape of potential \rightarrow Higgs self-interaction \rightarrow di-Higgs production

Chasing two Higgses at the LHC

-3

Chasing two Higgses at the LHC

-3

34
Status of HH analyses

-1.24 < κ_λ <6.49

+bbWW, VHH(4b), etc.

Single H meets HH

NLO EW contributions from Higgs self-coupling in single H processes

Other Higgs couplings of course still enter!

K_t 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7

Single H meets HH

Much more data to come in the next decades! (Relying on the upgrades)

Higgs prospects at the HL-LHC

Per-cent level precision on most Higgs couplings, **dominated by theory uncertainties**

arXiv:1902.00134

Higgs prospects at the HL-LHC

Per-cent level precision on most Higgs couplings, **dominated by theory uncertainties**

Higgs prospects at the HL-LHC

Per-cent level precision on most Higgs couplings, **dominated by theory uncertainties**

NB projection already "outdated" → analysis methods for full Run 2 improved wrt 2016!

Summary

- (Biased) overview of recent advances in Higgs physics at CMS
- In 11 years since the Higgs boson discovery, tremendous progress has been made
- Much more to measure, understand, and (hopefully) discover about the Higgs boson with Run 3 and HL-LHC data!

Particle ID @ CMS

HIG-20-001, sub'd to PRD

H→ττ boosted

H->TT boosted

138 fb⁻¹ (13 TeV)

Probing fewer bins than bb, still interesting additional information at very high p_T

Adds a (still imprecise) measurement of associated jet p_T

44

BSM decays: $H \rightarrow aa$

- Extended Higgs sectors → **BSM Higgs decays possible**
- E.g. models with two Higgs doublets + scalar singlet
- 2HDM: 5 Higgs bosons
 - H(125) does not decay to the others
- 2HDM+S: 7 Higgs bosons, incl. light 'a'

https://twiki.cern.ch/twiki/bin/view/CMSPublic/Summary2HDMSRun2

BSM decays: $H \rightarrow aa$

aa)

B H

UO

 10^{-2}

 10^{-}

10

10

- Extended Higgs sectors -> BSM Higgs decays possible
- E.g. models with two Higgs doublets + scalar singlet
- → a story for another day
 - H(125) does not decay to the others
- 2HDM+S: 7 Higgs bosons, incl. light 'a'

https://twiki.cern.ch/twiki/bin/view/CMSPublic/Summary2HDMSRun2

