
Ecosystem
P.-A. Delsart, J. Fulachier, F. Lambert, J. Odier

Presentation
outline
ATLAS Metadata Interface (AMI)
A generic ecosystem for scientific
metadata

AM
I

What is AMI?

AMI backend

1

2

3

4

AMI frontend

Metadata
aggregation

5 AMI live demo

3

01 What is
AMI ?

What is AMI?
 AMI (ATLAS Metadata Interface) is a generic ecosystem dedicated to scientific metadata:

 Heterogenous datasource / Web service connectivity
 AMI can connect to any existing DB or Web service

 High level primitives for metadata extraction and processing
 High level tools for performing data selection by metadata criteria

 The ecosystem has development kits for:
 Developing server-side metadata-oriented subsystems (in JAVA)
 Developing client-side metadata-oriented Web applications (in JS) and scripts (in Python, JS, ...)

 AMI is designed to work in big-data context:
 Scalability, evolutivity and maintainability

W
ha

t i
s A

M
I?

What is AMI?
 > 22 years of experience within the ATLAS collaboration at CERN

 AMI hosts metadata for O(10^6) datasets and O(10^9) files

W
ha

t i
s A

M
I?

Typical usage
W

ha
t i

s A
M

I?

Aggregating
scientific

metadata from
heterogeneous

datasources

Searching
scientific data
by metadata

criteria

Storing software
&

job metadata

Data
preservation

&
reproducibility

Typical usage
 Aggregating scientific metadata from heterogeneous datasources:

 Condition / housekeeping metadata
 Dataset and file metadata (from production and data movement systems)
 End-user metadata (physics parameters, annotations, comments, …)

 Searching scientific data by metadata criteria:
 Via Web interfaces and Python / JS / C++ / Java / ... scripts
 This is the most important feature for end-users / physicists

 Defining metadata for softwares (version, parameters), grid jobs, etc...
 In ATLAS, each grid job is defined from an AMI-Tag (= set of software parameters)
 Each dataset is associated to one or many AMI-Tags

 Associating datasets and papers:
 Data preservation
 Reproducibility

W
ha

t i
s A

M
I?

Example of workflow
W

ha
t i

s A
M

I?

Acquisition
&

(Re)processing
&

Simulation

RUCIO
Data movement &

file metadata

AMI

Scientific metadata
Software & job metadata

Data preservation & reproducibility

Site 1

Site 2

Site n

Housekeeping
DB

Instrument

da
ta

 c
en

te
rs

 H
P

C
 e

nv
iro

nm
en

t

Low level
metadata DB

Python / JS
C++ / … clients

AMI Web
interfaces

High level
metadata DB

temporal payloads

API or direct
DB access

RUCIO
REST API

End-user environment

For physicists

AMI-
Tags

Data movement

Data production AMI avoids to process
data directly!

AMI Ecosystem
W

ha
t i

s A
M

I?

Initial data and
metadata

Detector

Metadata
aggregation,

transformation and
storing

AMI
TaskServer

Web services &
high level metadata

features

AMI Backend

Web interfaces &
REST, Python, JS,

Java, C++, ...
clients

AMI Frontend1

2

3

4

AMI Ecosystem – whole stack

 Images on DockerHub and DockerCompose demo
 Easy deployment in a Docker Compose or Kubernetes environment
 CHEP 2023 paper: https://cds.cern.ch/record/2868009/files/ATL-SOFT-PROC-2023-009.pdf

 Each sub-system of the AMI ecosystem can connect to an optional MQTT broker for:
 Monitoring purpose (cpu usage, ram usage, disk usage, ...)
 Control purpose (reload, restart, ...)

W
ha

t i
s A

M
I?

https://cds.cern.ch/record/2868009/files/ATL-SOFT-PROC-2023-009.pdf

AMI can immediately connect to any
existing database or web service

AMI meets the needs of both
small and large scientific experiments

W
ha

t i
s A

M
I?

12

02 AMI
Backend

AMI Backend
 AMI Backend

 Based on the AMI Java Core library
 Control and monitoring capabilities via MQTT
 Scalable Web service (REST and proprietary APIs) with authentications / authorizations
 Heterogeneous datasource connectivity (as soon as a Java JDBC driver exists)
 Command engine (= the way of talking with AMI)

 Metadata queries (generic or more specific queries),
experiment-specific commands, service administration, …

 Metadata Query Language (= MQL, see next slide)
 High-level primitives for data & metadata handling

 See CHEP 2019 paper:
 https://www.epj-conferences.org/articles/epjconf/pdf/2019/19/epjconf_chep2018_05046.pdf

AM
I B

ac
ke

nd

https://www.epj-conferences.org/articles/epjconf/pdf/2019/19/epjconf_chep2018_05046.pdf

AMI Backend – MQL
 Metadata Query Language (MQL)

 Kind of SQL without FROM clause nor join
 It makes it possible to build queries without knowing table relations
 Joins are automatically generated from the AMI reflexion sub-system
 MQL turns the database-oriented perspective into a metadata-oriented perspective.

 See CHEP 2019 paper:
 https://.../epjconf_chep2020_04044.pdfAM

I B
ac

ke
nd

MQL to
SQL

https://www.epj-conferences.org/articles/epjconf/pdf/2020/21/epjconf_chep2020_04044.pdf

AMI Backend – overview
AM

I B
ac

ke
nd

authentication and roles

high level primitives for manipulating data
distributed transactional engine

connection pool
JDBC drivers

reflexion and MQL

command engine data formatter

n-tiers architecture

Command layer

Metadata layer

AMI Backend – command layer
AM

I B
ac

ke
nd

Authorization sub-system Command sub-system
(JAVA classes)

Authentication sub-system
(password / X.509 certificate / JWT / SSO with OAuth2)

Metadata layerAMI
conf

SQL
NoSQL

Other
(file, broker, ...)

Formatter
(XSLT)

HTTPS clients

granularity:

catalog, row or field

AMI Backend – metadata layer
AM

I B
ac

ke
nd

Command #1
(transaction #1)

MySQL Oracle NoSQL

Connection pool (HikariCP)

Command sub-system

Relation extraction for SQL only
(foreign keys, indices, ...)

free used
……

Reflexion sub-system

MQL → SQL
automatic generation of SQL Joins

Very high level rowset

Transaction pool

MetadataQueryLanguage

Data primitives

Transaction #1 Transaction #2
…

Command #2
(transaction #2)

Command #3
(transaction #2)

…

18

03 AMI
Frontend

AMI Web Framework
 AMI Frontend (aka AMI Web Framework (AWF))

 Based on modern technologies (Webpack, Boostrap, TWIG)
 Optimized for developing metadata-oriented JS Web applications
 AMI provides a set of ready-to-use applications and controls (see next slide)

 AMI controls are embeddable in external websites such as WIKIs, confluence, …
 Patterns MVC (with AMI-Twig) or MVVM (with Vue.js 3)

 See CHEP 2019 paper:
 https://www.epj-conferences.org/articles/epjconf/pdf/2019/19/epjconf_chep2018_04004.pdf

AM
I F

ro
nt

en
d

https://www.epj-conferences.org/articles/epjconf/pdf/2019/19/epjconf_chep2018_04004.pdf

AMI Web Framework
 Applications are generally built by assembling controls
 Main available controls:

 Dialog boxes
 Controls for annotating entities
 Controls for searching (Simple Search, Criteria Search, …)
 Controls for displaying (Schema Viewer, Tab, Table, Element Info, …)

 Main available applications:
 Embedded CMS
 AMI command interpreter
 Admin Dashboard and Monitoring
 Schema Viewer, Table Viewer, Simple Search, Criteria Search, Search Modeler, …

AM
I F

ro
nt

en
d

Designing search interfaces (admin)
AM

I F
ro

nt
en

d

Searching data by criteria
AM

I F
ro

nt
en

d

Search results
AM

I F
ro

nt
en

d

Low code interface for customization (admin)
AM

I F
ro

nt
en

d

Details and linked entities
AM

I F
ro

nt
en

d

DB visualization and browsing
AM

I F
ro

nt
en

d

Interacting with AMI from the Web
AM

I F
ro

nt
en

d

XML, JSON, CSV,
TEXT, ...

Interacting with AMI from a shell
AM

I F
ro

nt
en

d

Interacting with AMI from a python
script

AM
I F

ro
nt

en
d

30

04 Metadata
aggregation

AMI Task Server
 AMI Task server

 Extracting metadata from primary sources (pull mode)
 (Re)Processing and storing metadata in AMI

 It can run any kind of tasks (Shell, Python, JS, C++, Java, …)
 Optionally benefits from the AMI Java Core library

 Main features:
 Kind of super CRON
 The AMI Task Server is distributed
 Control and monitoring capabilities via MQTT
 Mutual exclusion mechanism between tasks (with the AMI Exclusion Server)
 Priority lottery scheduler for avoiding starvation (not real time)
 Pipelined tasks with execution report

M
et

ad
at

a
Ag

gr
eg

at
io

n

AMI Task Server
M

et
ad

at
a

Ag
gr

eg
at

io
n

AMI Task Server
M

et
ad

at
a

Ag
gr

eg
at

io
n

Pipelined tasks
 AMI provides a Node-RED-based interface for defining and monitoring pipelined tasks
 No single point of failure
 CHEP 2023 paper:

 https://cds.cern.ch/record/2867330/files/ATL-SOFT-PROC-2023-006.pdf

M
et

ad
at

a
Ag

gr
eg

at
io

n

https://cds.cern.ch/record/2867330/files/ATL-SOFT-PROC-2023-006.pdf

35

05 AMI
live demo

AMI live demo
AM

I l
iv

e
de

m
o

http://localhost:667/

Run AMI on your laptop
https://github.com/ami-team/AMIDemo

http://localhost:667/
https://github.com/ami-team/AMIDemo

37

Conclusion

Conclusion
 AMI is mature metadata ecosystem of more than 20 years of existence in the LHC context:

 AMI and a data movement tool (for example Rucio) are complementary tools with different
purposes

 AMI is easy to deploy and rescale (docker images), administrate
 (low code application design), and use

 Benefits of using AMI in your experiment:
 AMI is pluggable to any existing production system (databases and Web services)

 AMI is not intrusive
 AMI aggregates low-level metadata into high-level metadata for physicists

 Housekeeping, dataset and file, end-user, software, ... metadata
 AMI provides Web services, interfaces, and clients (Python, JS, C++, Java)

 for easily select data by metadata criteria
 AMI can associate data and papers for data preservation & reproducibility

 Prerequisites: having well-defined low level metadata at data production level

Co
nc

lu
sio

n

39

LPSC - Grenoble
ami@lpsc.in2p3.fr
https://ami-
ecosystem.in2p3.fr/

Thank You
for your attention

mailto:ami@lpsc.in2p3.fr

40

	Ecosystem
	Presentation outline
	Slide 3
	What is AMI?
	What is AMI? (2)
	Typical usage
	Typical usage (2)
	Example of workflow
	AMI Ecosystem
	AMI Ecosystem – whole stack
	Slide 11
	Slide 12
	AMI Backend
	AMI Backend – MQL
	AMI Backend – overview
	AMI Backend – command layer
	AMI Backend – metadata layer
	Slide 18
	AMI Web Framework
	AMI Web Framework (2)
	Designing search interfaces (admin)
	Searching data by criteria
	Search results
	Low code interface for customization (admin)
	DB visualization and browsing
	DB visualization and browsing (2)
	Interacting with AMI from the Web
	Interacting with AMI from a shell
	Interacting with AMI from a python script
	Slide 30
	AMI Task Server
	AMI Task Server (2)
	AMI Task Server (3)
	Pipelined tasks
	Slide 35
	AMI live demo
	Slide 37
	Conclusion
	Slide 39
	Slide 40

