The T2K experiment and the upgrade of its near detector ND280

On behalf of the LPNHE neutrino group

From Tokai to Kamioka: the T2K experiment

- T2K: long baseline neutrino oscillation experiment located in Japan
- ν_{μ} or $\bar{\nu}_{\mu}$ beam produced at J-PARC accelerator
- Near detector ND280: characterizes (anti) neutrino flux and cross-section before neutrino oscillations
- Far detector Super-Kamiokande (SK): detects ν_{μ} ($\bar{\nu}_{\mu}$) and ν_e ($\bar{\nu}_e$) charged current interactions through Cherenkov effect
- Off-axis techniques: ND280 and SK at 2.5° from beam for a narrower band beam peaked at 0.6 GeV

The contributions of the LPNHE group

- **Design**, **production** and **tests** of ND280 Upgrade HA-TPC front end electronics, see Fig.1
- The HA-TPC data acquisition system based on MIDAS

LPNHE

- The HA-TPC simulation and reconstruction (track fitting) software: the use of new resistive **MicroMegas technology** requires adapting the full software chain
- Analysis of HA-TPC prototypes: test-beam data at CERN in 2018 [1] and at DESY in 2019 [2] and 2021 [4]

[3]

Track reconstruction new methods in the HA-TPCs (log Q method, machine learning)

CNrS

Figure 1. HA-TPC field cage equipped with 8 ERAMs (left), each readout by 2 Front-End Cards (FEC) and 1 Front-End Mezzanine (FEM) (right)

- 55 cm

The upgrade of the Near Detector ND280

Reasons for the upgrade:

- The upgraded detector:
- I Fine Grained Detector (SuperFGD) placed between

acceptance (limited

phase-space coverage

The High-Angle TPC Reconstruction Software

1400

1000

800

Figure 6. Spatial resolution as a function of track angle

HA-TPC prototype exposed to the DESY test beam 2021 showed a spatial

- 2 High-Angle Time Projection **Chambers** (HA-TPC) instrumented with resistive MicroMegas
- \rightarrow ongoing comissionning in Tokai!

The Encapsulated Resistive Anode Micromegas (ERAM) technology

Figure 2. Previous bulk micromegas (left) and new encapsulated resistive anode micromegas technology (right)

Charge deposited spread on adjacent pads with Gaussian behavior:

- \rightarrow Larger e^- avalanche + time information
- \rightarrow Improved spatial resolution: **200 \mum for horizontal tracks** [4] (vs 600 µm with bulk MicroMegas)

Figure 5. Spatial resolution as a

function of drift distance

Figure 7. Momentum resolution as a function of the track angle for 800 MeV. $c^{-1} \mu^{-1}$

resolution **better than 800 µm** for all the track topologies

The Geant4 simulations results obtained showed a momentum resolution **better** than 3% for horizontal tracks and of the order of 10% for vertical tracks because of their shorter length

Neural networks for HA-TPC track reconstruction

Figure 8. Standard architecture using convolution operation widely used for image recognition, fed with HA-TPC images of deposited charge (MC simu)

HA-TPC installation and first tracks

Figure 3. First cosmics tracks observed at J-PARC (October 2023)

Figure 4. Bottom HA-TPC and SuperFGD inside ND280 (October 2023)

Figure 9. 3% momentum resolution for 0.2-2 GeV muons at 45° (vs 6.5% with current algorithms)

Figure 10. PID between muons and electrons: PDG code predictions

References

- [1] D. Attié et al. Performances of a resistive Micromegas module for the Time Projection Chambers of the T2K Near Detector upgrade. Nucl. Instrum. Meth. A, 957:163286, 2020.
- [2] D. Attié et al. Characterization of resistive Micromegas detectors for the upgrade of the T2K Near Detector Time Projection Chambers. Nucl. Instrum. Meth. A, 1025:166109, 2022.
- [3] S. Dolan et al. Sensitivity of the upgraded T2K Near Detector to constrain neutrino and antineutrino interactions with no mesons in the final state by exploiting nucleon-lepton correlations. Phys. Rev. D, 105(3):032010, 2022.
- [4] U. Yevarouskaya et al. Analysis of test beam data taken with a prototype of tpc with resistive micromegas for the t2k near detector upgrade. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1052:168248, 2023.

* anaelle.chalumeau@lpnhe.in2p3.fr, ** ulysse.virginet@lpnhe.in2p3.fr

HCÉRES Meeting, December 2023