β-delayed neutron spectroscopy opportunities with MONSTER

Alberto Pérez de Rada Fiol

D. Cano-Ott, T. Martínez, V. Alcayne, E. Mendoza, J. Plaza, A. Sanchez-Caballero, D. Villamarín

MONSTER Collaboration

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

- Introduction
- Methodology
- ^{85,86}As β-decays @ IGISOL
- Summary and conclusions

Introduction

- Methodology
- ^{85,86}As β-decays @ IGISOL
- Summary and conclusions

β-delayed neutron emission

 β -delayed neutron emission occurs in the neutron-rich side of the chart of nuclides

 β -delayed neutrons are interesting for:

• Nuclear structure

Ciemat

MINISTERIO

DE CIENCIA, INNOVACIÓN

- Nuclear astrophysics
- Fission reactor kinetics and control

Nuclear structure

For $S_n < E < Q_\beta$ typically $\Gamma_n(E) >> \Gamma_\gamma(E)$

Ciema

β-strength function:

$$S_{\beta}(E) = \frac{1}{D} \sum_{J^{\pi}} |M_{fi}|^{2} \rho(E, J^{\pi})$$
$$S_{\beta}(E) = \frac{I_{\beta}(E)}{f(Z+1, Q_{\beta} - E)T_{1/2}}$$

β-decay properties: $P_{n} = \frac{\int_{S_{n}}^{Q_{\beta}} S_{\beta}(E) f(Z+1, Q_{\beta}-E) \left\langle \frac{\Gamma_{n}(E)}{\Gamma_{tot}(E)} \right\rangle dE}{\int_{0}^{Q_{\beta}} S_{\beta}(E) f(Z+1, Q_{\beta}-E) dE}$ $S(E_{n}) = \int_{S_{n}}^{Q_{\beta}} \left\langle \frac{\Gamma_{n}(E, E_{n})}{\Gamma_{n}(E)} \right\rangle I_{\beta n}(E) dE$ E. Valencia *et al.*, Phys. Rev. C, **95**, (2017) 024320

Far enough from stability $S_{xn} < Q_{\beta}$ leads to multiple neutron emission

The β -delayed neutron emission spectrum gives information about nuclear structure and complements reaction data

MONSTER

MOdular Neutron time-of-flight SpectromeTER is a detection system designed for DESPEC

It's the result of an international collaboration between CIEMAT, JYFL-ACCLAB, VECC, IFIC, and UPC

Main characteristics:

• Low neutron energy threshold

Ciema

- High intrinsic neutron detection efficiency
- Discriminates between detected neutrons and γ-rays by their pulse shape
- Good time resolution
- The energy of the neutrons is determined with the TOF technique A. R. Garcia *et al.*, JINST, **7**, (2012) C05012

T. Martinez *et al.,* Nuclear Data Sheets, **120**, (2014) 78

DAISY

Digital data Acquisition SYstem

Custom DAQ software developed at CIEMAT

D. Vilamarín, Nucl. Instrum. and Methods A, **1055**, (2023) 168526

Hardware:

- 15 x ADQ14DC Teledyne SP Devices cards (14 bits, 1 GS/s, 4 ch)
- 2 x Counter/Timer PCIe6612 National Instruments
- NI Octoclock CDA-2990 (10 MHz, 8 ch)
- Wiener NIM/TTL Programmable modules
- 2 x PCs + 2 x PCle crates
- 3 x 96 TB RAID 6

Integrates custom pulse shape analysis software developed at CIEMAT to analyze signals online:

- Resolving pileups
- Without adding dead time

Pulse shape analysis

Introduction

- Introduction
- Methodology
- ^{85,86}As β-decays @ IGISOL
- Summary and conclusions

Inverse problem

10

Inverse problem

The response matrix transforms the original neutron energy distribution into the measured TOF spectrum

What is needed:

- Method for solving the inverse problem -> Iterative Bayesian method G. D'Agostini, Nucl. Instrum. and Methods A, 362, (1995) 487
- Construction of the response matrix *R* covering the whole neutron energy range and providing the TOF response for each considered neutron energy -> Accurate Monte Carlo simulations with Geant4

Validation with the analysis of a virtual experiment's TOF data with a known solution (neutron energy distribution):

- *R* is discretized in TOF and E_n . The best binning in TOF and E_n has to be determined
- Study of systematical effects on the obtained solution. Different *R*s for different thresholds, background, and β-detection efficiency

Analysis of a realistic β -decay experiment

The realistic experiment combines several experimental effects, such as the flight path and TOF resolutions, the neutron detection threshold, and includes the effect of the β-detector threshold

A very accurate reproduction of the neutron energy distribution is achieved over a large energy range

A. Pérez de Rada Fiol *et al.*, "Analysis methodology of neutron time-of-flight spectra based on Bayesian unfolding and accurate Monte Carlo simulations", Submitted for publication

- Introduction
- Methodology
- ^{85,86}As β-decays @ IGISOL
- Summary and conclusions

Analysis scheme

Fit of the β-activity curve ->

Number of decays N_d

Neutron energy distribution

Unfolding of the TOF spectrum ->--

Total number of neutrons N_n emitted above the detection threshold

Lower estimate of the P_n value

Solving the Bateman equations for ⁸⁵As

Ciemat

Centro de Investigaciones Energéticas, Medioambientales

y Tecnológicas

GOBIERNO DE ESPAÑA MINISTERIO

Y UNIVERSIDADES

DE CIENCIA, INNOVACIÓN

Simulated from experimental d								
^A Z	$\overline{\epsilon}$ (%)	R (ions/s)	Decays					
⁸⁵ As	80.8	1800 ± 100	$(4.8 \pm 0.3) \times 10^7$					
⁸⁵ Se	76.0	23300 ± 900	$(2.39 \pm 0.09) \times 10^8$					
⁸⁵ Br	69.7	13900 <u>+</u> 2500	$(4.2 \pm 0.5) \times 10^7$					
⁸⁴ Se	55.1	0 ± 0	$(1.8 \pm 0.1) \times 10^{6}$					

$$N_{n}(t) = \sum_{i=1}^{n} N_{i}(t_{0}) \left(\prod_{j=i}^{n-1} (\lambda_{j} b_{j,j+1}) \sum_{j=i}^{n} \frac{e^{-\lambda_{j}(t-t_{0})}}{\prod_{p=i,p\neq j}^{n} (\lambda_{p} - \lambda_{j})} \right) + \sum_{i=1}^{n} R_{i} \left(\prod_{j=i}^{n-1} (\lambda_{j} b_{j,j+1}) \sum_{j=i}^{n} \frac{1 - e^{-\lambda_{j}(t-t_{0})}}{\lambda_{j} \prod_{p=i,p\neq j}^{n} (\lambda_{p} - \lambda_{j})} \right)$$

K. Skrable et al., Health Physics, 27, (1974) 155

Solving the Bateman equations for ⁸⁶As

^A Z	$\overline{m{\epsilon}}$ (%)	R (ions/s)	Decays
⁸⁶ As	83.5	570 <u>+</u> 40	$(1.27 \pm 0.08) \times 10^7$
⁸⁶ Se	72.9	16100 ± 400	$(7.4 \pm 0.2) \times 10^{7}$
⁸⁶ Br	77.5	21500 ± 2100	$(3.0 \pm 0.3) \times 10^7$
⁸⁵ Se	76.0	0 ± 0	$(3.2 \pm 0.2) \times 10^5$

Analysis of the TOF data

Different neutron cuts were studied to obtain a "clean" TOF spectrum

The importance of having PSD: the PSD vs light cut allows for more than one order of magnitude of uncorrelated γ-rays background suppression

Counts

10²

10

Neutron TOF data unfolding

^{85,86}As β-decays @ IGISOL

Excellent agreement with previous data and evaluations

^{85,86}As β-decays @ IGISOL

- Introduction
- Methodology
- ^{85,86}As β-decays @ IGISOL
- Summary and conclusions

Summary and conclusions

The main takeaways from this presentation are:

- Commissioning of MONSTER and its DAQ system DAISY:
 - Successful commissioning and ready to be used (for other kind of experiments too!)
 - Good neutron/γ-ray discrimination capabilities
 - Excellent energy resolution
- Validation of a new data analysis methodology for neutron TOF spectroscopy:
 - Unfolding of the TOF spectrum with a methodology based on the iterative Bayesian unfolding method and accurate Monte Carlo simulations
 - Validation of the unfolding methodology with a simulated experiment
- Results:
 - Procurement of the ⁸⁵As β-delayed neutron spectrum and the "first" ⁸⁶As β-delayed neutron spectrum

The MONSTER Collaboration today

	CIEMAT	VECC	JYFL-ACCLAB	IFIC/UPC	Total
Detectors	45	15	8	6	74
Channels	56	8	8	0	72

