

beta delayed (multi-)proton emission at DESIR

J. Giovinazzo – LP2iB (former CENBG) – Bordeaux

DESIR workshop - 27/02-01/03/2024

towards the proton drip-line

towards the proton drip-line

precise probe !!

- easily detected

S_P

- precise energy

physics cases: decay spectroscopy

beta decay Fermi / Gamow Teller

daughter nucleus de-excitation

- gamma transitions
- (multi-)proton emission

many physics cases

- masses
- isospin symmetry
- weak interaction
- nuclear structure
- deformation
- nuclear astrophysics
- level densities
- excited states lifetimes
- 2-proton decay

detailed decay spectroscopy

→ address several topics simultaneously

very exotic stuff...

- \rightarrow exploration: fragmentation
- → details/precision: ISOL

physics cases: Fermi decay

physics cases: Fermi decay

Isobaric Multiplet Mass Equation (IMME, Wigner, 1957) charge independent strong nuclear interaction + Coulomb

$$\boldsymbol{M}(\boldsymbol{T}_{\boldsymbol{Z}}) = \boldsymbol{a} + \boldsymbol{b} \times \boldsymbol{T}_{\boldsymbol{Z}} + \boldsymbol{c} \times \boldsymbol{T}_{\boldsymbol{Z}}^2$$

physics cases: Fermi decay

proton emission from IAS is forbidden (isospin)

- \rightarrow isospin mixing
- → test of INC terms in nucl. interaction (collab. N. Smirnova)

– DESIR workshop – 27/02-01/03/2024 J. Giovinazzo

1400

1600 1800

Energy (keV)

physics cases: Fermi decay

proton emission from IAS is forbidden (isospin)

- \rightarrow isospin mixing
- → test of INC terms in nucl. interaction (collab. N. Smirnova)

physics cases: astrophysics

states close to the proton emission threshold

physics cases: Gamow-Teller decay

physics cases: Gamow-Teller strength distribution

physics cases: Gamow-Teller strength distribution

physics cases: Gamow-Teller decay

R. Bengtsson & P. Möller (nature, 2007)

 DESIR workshop – 27/02-01/03/2024 J. Giovinazzo

physics cases: Gamow-Teller decay

- 27/02-01/03/2024 - DESIR workshop J. Giovinazzo

limited contribution

physics cases: β–2proton emission

physics cases: β–2proton emission

27/02-01/03/2024 **DESIR** workshop . Giovinazzo

physics cases: β–2proton emission

best candidates for β -2P direct emission ?

→ from IAS: 1p forbidden, 2p allowed: $T_z < -3/2$ → e.g.: ³⁵Ca, ³⁹Ti, ⁴³Cr, ...

 $I_{\beta \rightarrow IAS} \sim 5\%$; $R_{2P/1P} \sim 2\% \rightarrow >10^4$ counts for signature

E791 (LISE+ACTAR TPC) (A. Ortega Moral *et al*.)

few events compatible with β -2P direct emission \rightarrow ⁴³Cr (and ⁴⁶Fe?)

>10⁵ counts for correlations

ISOL versus fragmentation: beta-proton detection capabilities

ISOL versus fragmentation

decay station

production rates from website

produc	production	rate	first A	T1/2 (ms)	lsotope
(S3 or 9	SPIRAL1	600 ?	²⁴ Al (+2)	91.1	²² AI
	SPIRAL1	420	²⁴ Si (+1)	42.3	²³ Si
typical r	S3	18000			
for these ≥ ~	SPIRAL1	0.3		43.7	²⁶ P
	S3	1300		\wedge	
	S3	160000	²⁹ S (+2)	15.5	²⁷ S
short h	SPIRAL1	2 – 4 ?		14.4	³¹ Ar
producti - extrapo - at focal - what a - need fo	S3	8		25.7	³⁵ Ca
	S3	0.1 - 10		31	³⁹ Ti
	SPIRAL1	2000	⁴⁶ Cr (+3)	21.2	⁴³ Cr
	S3	60000			\smile
	S3	300 - 2000	⁴⁹ Fe (+3)	13.0	⁴⁶ Fe
	S3	60 - 700		28	⁶⁹ Kr

tion reaction ??? SPIRAL1)

equired rate e decay experiments ~1 / sec

alf-lives

- ion S3
- olation to lower masses?
- I plane ?
- bout LEB \rightarrow DESIR ?
- or a fast gas cell?

