

Laser spectroscopy on heavy ions

Mustapha Laatiaoui

JOHANNES GUTENBERG UNIVERSITY

Outline

- Motivation
- Experimental challenges
- Laser Resonance Chromatography (LRC)
 - The method & setup
 - First results from inauguration experiments (Lu⁺)
- Prospects for LRC on lawrencium (Z=103) and beyond
- Summary & Outlook

Motivation Modern alchemists

Neutrons \rightarrow

Laser Resonance Chromatography (LRC)

General features

- Fast (milliseconds)
 - \rightarrow No need for neutralization/evaporation of sample atoms
- Sensitive
 - \rightarrow No need for fluorescence detection
 - \rightarrow No need for photoionization

- Suitable for d-block elements → Insensitive to physicochemical properties
- Efficient

- \rightarrow No cycle losses
- \rightarrow Permanent monitoring of production/extraction
- Versatile
 - ightarrow Broadband initial level search
 - \rightarrow Precision HFS
 - \rightarrow Can be applied to molecules
- Disadvantages
 - → Neutral atoms inaccessible
 - ightarrow Requires existence of a metastable state

Accessible elements

.0

Excitation schemes for Lu⁺ and Lr⁺

Ion mobilities (K_0) for Lu⁺ and Lr⁺

• Interaction potentials from ab-initio (MRCI) calculations

 \rightarrow Good agreement with SRCC and IHFSCC

- \rightarrow "Anisotropic spin-orbit coupled approximation"
- Predictions accurate within 3% for the $Lu^+({}^1S_0)$ –He

The first LRC shot With resonant laser excitation

M. Laatiaoui et al., Phys. Rev. Lett. **125** (2020) 023002

LRC towards Lr⁺ and Rf⁺

• Requirements: Radioactive-decay detection (using SSD)

- Increased sensitivity by registering alpha- (beta, fission) decays
 - \rightarrow Deflection of ions at the right moment
 - \rightarrow Centroids correspond to distinct arrival times
- Molecules need much more time
 - \rightarrow No mass filter required for alpha emitters
 - \rightarrow higher sensitivity & efficiency
- Level search with <10⁶ atoms in total and HFS measurements with <10⁵ atoms in total shall be possible

Has long-lived K-isomer! Evaporation residue: $^{197}Au + {}^{20}Ne \rightarrow {}^{208g,m}Ac {}^{/s}Ac {}^{/s}$

Evaporation residue:

Projectile fragments:

(190 pps; T_{1/2} > 0.3 s)

⁸⁶Kr on C \rightarrow ^{50g,m}Sc

 $^{40}Ca + {}^{6}Li \rightarrow {}^{44g,m}V$

(2500 pps)

Evaporation residue:

 208 Bi + 48 Ca \rightarrow 255 Lr

(0.4 pps)

https://u.ganil-spiral2.eu/chartbeams/

Summary/next steps

- ✓ Laser spectroscopy is a versatile tool for investigating atomic & nuclear properties
- ✓ LRC setup developed & proof-of-principle experiments established on ^{175,176}Lu⁺
- ✓ 0.6% overall efficiency → improvements possible

LRC roadmap:

- \rightarrow Investigation of states lifetimes and impact of collisional quenching
- \rightarrow Optimizing efficiency & resolution
- \rightarrow Online experiments on Lu⁺ and Lr⁺

The chromatography team

Collaborators

A. Borschevsky (U. Groningen) H. Ramanantoanina (KIT) G. Visentin (U. Warsaw) L. A. Viehland (Chatham U.) M. Block (U. Mainz, GSI) S. Raeder (GSI) E. Rickert (U. Mainz) P. Van Duppen (KU Leuven)

www.lrc-project.eu

LRC_Mainz

Thank you!

