# Precision measurements in superallowed 0<sup>+</sup> → 0<sup>+</sup> nuclear beta decays: opportunities at DESIR

#### Bernadette REBEIRO

DESIR WORKSHOP @ GANIL 27 February - 01 March, 2024





Unitarity of the CKM matrix : **crux** of the current Standard Model

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \cdot \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$
weak CKM matrix mass eigenstates

Unitarity of the CKM matrix : **crux** of the current Standard Model

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

 $V_{ud}$ : accessible via nuclear beta decays is by far the largest element of the first row (meson decays,  $|V_{ub}|^2$  of the order 10<sup>-5</sup>)



CKM matrix

weak eigenstates mass eigenstates



Unitarity of the CKM matrix : **crux** of the current Standard Model

 $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$ 

 $V_{ud}$ : accessible via nuclear beta decays is by far the largest element of the first row

To date : most precise determination of  $V_{ud}$  comes from from Ft from superallowed  $0^+ \rightarrow 0^+$  beta decays





Source of data

4

Unitarity of the CKM matrix : **crux** of the current Standard Model

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

 $V_{ud}$ : accessible via nuclear beta decays is by far the largest element of the first row

To date : most precise determination of  $V_{ud}$  comes from from Ft superallowed  $0^+ \rightarrow 0^+$  beta decays

Unitarity 
$$V_{ud}^2 + V_{us}^2 + V_{ub}^2 \neq 1$$
 violated at the  $2\sigma$  level.  
Is there new physics???

B. Rebeiro, DESIR Workshop 2024



CKM matrix



mass eigenstates



# **Quick primer on SA beta decays**

- β<sup>+</sup> decays between isobaric analog states (IAS) in mirror nuclei with no change in nuclear spin : J<sub>i</sub> = J<sub>f</sub>
- Two class of SA decays
  - Fermi decays
    - $J_i = J_f = 0^+$ ■ T = 1 isospin multiplets
  - Mirror decays

    - $T = \frac{1}{2}$  isospin multiplets
- Found on the neutron deficit side of the nuclear chart

|       | £ = 100.00    | )%   |        |      | _     |      | _     |      |      |      |      |      |
|-------|---------------|------|--------|------|-------|------|-------|------|------|------|------|------|
|       |               | ٢.   | 34Ca   | 35Ca | 36Ca  | 37Ca | 38Ca  | 39Ca | 40Ca | 41Ca | 42Ca | 43Ca |
| 20 —  | 149Dr / 7#    |      |        |      |       |      | 20,18 |      |      |      |      |      |
|       | 140F17.2#     |      | 10.000 |      |       |      |       |      |      |      |      |      |
| 10    | 31K           | 32K  | 33K    | 34K  | 35K   | 36K  | 37K   | 38K  | 39K  | 40K  | 41K  | 42K  |
| 10    |               |      |        |      |       |      |       |      |      |      |      |      |
|       |               |      |        |      |       |      |       |      |      |      |      |      |
| # 18- | 30Ar          | 31Ar | 32Ar   | 33Ar | 34Ar  | 35Ar | 36Ar  | 37Ar | 38Ar | 39Ar | 40Ar | 41Ar |
| Z) U  |               |      |        |      | 18,16 |      |       |      |      |      |      |      |
| oto   | 2901          | 3001 | 310    | 3201 | 33(1  | 340  | 350   | 3601 | 370  | 3801 | 3961 | 4001 |
| å 17- |               | 500. |        |      |       |      |       |      | 5741 |      |      |      |
|       |               |      |        |      |       |      |       |      |      |      |      |      |
|       | 285           | 295  | 305    | 315  | 325   | 335  | 34S   | 355  | 365  | 375  | 385  | 395  |
| 16 —  |               |      | 16,14  |      |       |      |       |      |      |      |      |      |
|       |               |      |        |      |       |      |       |      |      |      |      |      |
| 15    | 27P           | 28P  | 29P    | 30P  | 31P   | 32P  | 33P   | 34P  | 35P  | 36P  | 37P  | 38P  |
| 15-   |               |      |        |      |       |      |       |      |      |      |      |      |
|       |               |      |        |      |       |      |       |      |      |      |      |      |
| 14    | 26Si          | 27Si | 28Si   | 29Si | 30Si  | 31Si | 32Si  | 3351 | 34Si | 35Si | 3651 | 37Si |
| 2564  | 14,12         |      |        |      |       |      |       |      |      |      |      |      |
| 1     | 12            | 13   | 14     | 15   | 16    | 17   | 18    | 19   | 20   | 21   | 22   | 23   |
|       | Neutron (N) # |      |        |      |       |      |       |      |      |      |      |      |





• Beta branching ratio to the  $0^+$  IAS state, BR < 0.3%

#### B. Rebeiro, DESIR Workshop 2024

### ft value + corrections = Ft



Hardy & Towner, PRC 102, 045501 (2020)

3090

### ft value + corrections = Ft



Average Ft defines value of Vud => corrections define the magnitude

10

40

Hardy & Towner, PRC 102, 045501 (2020)

3090

# Isospin symmetry breaking (ISB) corrections

$$\mathcal{F}t^{0^+ \to 0^+} = ft^{0^+ \to 0^+} (1 + \delta_R') (1 + \delta_{NS} - \delta_C) = \frac{K}{2V_{ud}^2 G_F^2 (1 + \Delta_R)}$$

 $\boldsymbol{\delta}_{c} = \boldsymbol{\delta}_{c1} + \boldsymbol{\delta}_{c2}$ : isospin symmetry breaking N. A. Smirnova, Physics (2023), 5, 352-38 2.5 SM-WS (2015) SM-HF (1995) corrections **RHF-RPA** (2009)  $\boldsymbol{\delta}_{cr}$ : configurations mixing of the 0<sup>+</sup> IAS with RH-RPA (2009) SV-DFT (2012) non-analogue 0<sup>+</sup> states SHZ2-DFT (2012) Damgaard (1969  $\delta_{c2}$ : imperfect radial overlap between parent  $\Re$  1.5 IVMR (2009 & daughter  $\delta_{c}$  increases with Z Several  $\delta_{c}$  corrections using different  $\rightarrow$ 0.5 models.  $\rightarrow$ Large corrections near shell closure in 0  $T_{2}$  = -1 parents e.g. <sup>18</sup>Ne, <sup>30</sup>S, <sup>42</sup>Ti 10 15 20 25 30 35 5 7

#### To date : Ft computed using only one theory model

B. Rebeiro, DESIR Workshop 2024

#### But that's not all ...

#### Ft values good probe for BSM physics : look for a non-zero Fierz term (b<sub>F</sub>)

- Deviation of Ft from a constancy
- $b_{F}$  depends on transition energy and highest sensitivity in low Z emitters: <sup>10</sup>C, <sup>14</sup>O

$$\mathcal{F}t_{\text{BSM}}^{0^+ \to 0^+} \approx \frac{K}{2G_F^2 V_{ud}^2 (1 + \Delta_R^V)} \frac{1}{1 + b_F \gamma \langle 1/W \rangle}$$
To constrain b : improve precision on all ft
$$\overbrace{}^{\text{To constrain b : improve}}_{3065} \overbrace{}^{\text{Hardy \& Towner, PRC 102, 045501 (2020)}}_{3065} \xrightarrow{}^{\text{Hardy \& Towner, PRC 102, 045501 (2020)}}_{3065} \xrightarrow{}^{\text{Hardy \& Towner, PRC 102, 045501 (2020)}}_{20 \text{ constrain b : improve}} \xrightarrow{}^{\text{Hardy \& Towner, PRC 102, 045501 (2020)}}_{3065} \xrightarrow{}^{\text{Hardy \& Towner, PRC 102, 045501 (2020)}}_{20 \text{ constrain b : improve}} \xrightarrow{}^{\text{Hardy \& Towner, PRC 102, 045501 (2020)}}_{3065} \xrightarrow{}^{\text{Hardy \& Towner, PRC 102, 045501 (2020)}}_{20 \text{ constrain b : improve}} \xrightarrow{}^{\text{Hardy \& Towner, PRC 102, 045501 (2020)}}_{3065} \xrightarrow{}^{\text{Hardy \& Towner, PRC 102, 045501 (2020)}}_{20 \text{ constrain b : improve}} \xrightarrow{}^{\text{Hardy \& Towner, PRC 102, 045501 (2020)}}_{3065} \xrightarrow{}^{\text{Hardy \& Towner, PRC 102, 045501 (2020)}}_{20 \text{ constrain b : improve}} \xrightarrow{}^{\text{Hardy \& Towner, PRC 102, 045501 (2020)}}_{3065} \xrightarrow{}^{\text{Hardy \& Towner, PRC 102, 045501 (2020)}}_{20 \text{ constrain b : improve}} \xrightarrow{}^{\text{Hardy \& Towner, PRC 102, 045501 (2020)}}_{10 \text{ constrain b : improve}} \xrightarrow{}^{\text{Hardy \& Towner, PRC 102, 045501 (2020)}}_{10 \text{ constrain b : improve}}$$

#### **Current scenario...**

#### 23 known cases, but precision ≅0.3% or better for **only** 15 transitions



Images from Hardy & Towner, PRC **102**, 045501 (2020)

### Superallowed program at GANIL : Current

- Proposal to remeasure the branching ratio of  $^{18}Ne \rightarrow ^{18}F$
- Analyzing the data to improve branching ratio and half-life for decay of  ${}^{30}S \rightarrow {}^{30}P$
- Exploring production of <sup>42</sup>Ti at LISE



To benchmark  $\delta_{c}$  calculations : need high precision experimental data

### **Superallowed program at GANIL : Future**

- Improve precision on remaining 5 cases
- Require beams from upcoming S3 facility
- Branching ratio measurement with Total Absorption spectroscopy (TAS)



B. Rebeiro, DESIR Workshop 2024

# **Superallowed program at GANIL : Future**

#### Extend range of nuclei to test CVC for heavier super allowed $\beta^+$ emitters

- Beams from upcoming S<sup>3</sup> facility.
- Couple with HRS/PIPERADE @ DESIR for ultrapure samples
- Mass measurements using PIPERADE/MLLTRAP
- BR, t<sub>1/2</sub> using decay tape station and TAS or other decay spectroscopy setups.



# **Superallowed program at GANIL : Challenges**

#### **DESIR** beams via S<sup>3</sup>-LEB

- 1.  $t_{1/2}$  for know (heavier) SA emitters <sup>54</sup>Ni <sup>70</sup>Br : **115 ms and less** 
  - Current gas cell extraction time 300-600 ms (projected to 50 ms)
  - Could be a major bottleneck
- 2. LASER ionization schemes currently not available for all SA emitters
  - Need support from LASER
     community to develop efficient
     laser ionization schemes

| 1<br>H<br>1.008        | 2                         | Studied by laser spectroscopy<br>To be studied in the current/new RI facilities |                           |                           |                           |                           |                           |                           |                    |                           |                           | 13                        | 14                        | 15                        | 16                        | 17                        | 2<br>He<br>4.003          |
|------------------------|---------------------------|---------------------------------------------------------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|--------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| 3<br>Li<br>6.941       | 4<br><b>Be</b><br>9.012   |                                                                                 |                           |                           |                           |                           |                           |                           |                    |                           |                           | 5<br><b>B</b><br>10.811   | 6<br>C<br>12.011          | 7<br><b>N</b><br>14.007   | 8<br><b>O</b><br>15.999   | 9<br>F<br>18.999          | 10<br><b>Ne</b><br>20.180 |
| 11<br>Na<br>22.990     | 12<br>Mg<br>24.305        | 3                                                                               | 4                         | 5                         | 6                         | 7                         | 8                         | 9                         | 10                 | 11                        | 12                        | 13<br>Al<br>26.982        | 14<br>Si<br>28.086        | 15<br><b>P</b><br>30.974  | 16<br><b>S</b><br>32.065  | 17<br>Cl<br>35.453        | 18<br>Ar<br>39.948        |
| 19<br>K<br>39.098      | 20<br><b>Ca</b><br>40.078 | 21<br><b>Sc</b><br>44.956                                                       | 22<br>Ti<br>47.867        | 23<br>V<br>50.942         | 24<br>Cr<br>51.996        | 25<br>Mn<br>54.938        | 26<br>Fe<br>55.845        | 27<br>Co<br>58.933        | 28<br>Ni<br>58.693 | 29<br>Cu<br>63.546        | 30<br>Zn<br>65.39         | 31<br>Ga<br>69.723        | 32<br>Ge<br>72.61         | 33<br>As<br>74.922        | 34<br><b>Se</b><br>78.97  | 35<br>Br<br>79.904        | 36<br><b>Kr</b><br>83.789 |
| 37<br>Rb<br>85.468     | 38<br><b>Sr</b><br>87.62  | 39<br>Y<br>88.906                                                               | 40<br>Zr<br>91.224        | 41<br><b>Nb</b><br>92.906 | 42<br>Mo<br>95.95         | 43<br>Tc<br>[98]          | 44<br><b>Ru</b><br>101.07 | 45<br><b>Rh</b><br>102.91 | 46<br>Pd<br>106.43 | 47<br><b>Ag</b><br>107.87 | 48<br>Cd<br>112.41        | 49<br><b>In</b><br>114.82 | 50<br><b>Sn</b><br>118.71 | 51<br><b>Sb</b><br>121.76 | 52<br><b>Te</b><br>127.60 | 53<br>I<br>126.90         | 54<br><b>Xe</b><br>131.29 |
| 55<br>Cs<br>132.91     | 56<br><b>Ba</b><br>137.33 | 57-71<br>*                                                                      | 72<br><b>Hf</b><br>178.49 | 73<br><b>Ta</b><br>180.95 | 74<br>W<br>183.84         | 75<br><b>Re</b><br>186.21 | 76<br><b>Os</b><br>190.23 | 77<br>Ir<br>192.22        | 78<br>Pt<br>195.08 | 79<br>Au<br>196.97        | 80<br>Hg<br>200.59        | 81<br>Tl<br>204.38        | 82<br><b>Pb</b><br>207.2  | 83<br><b>Bi</b><br>208.98 | 84<br><b>Po</b><br>[209]  | 85<br>At<br>[210]         | 86<br><b>Rn</b><br>[222]  |
| 87<br>Fr<br>[223]      | 88<br><b>Ra</b><br>[226]  | 89-103<br>#                                                                     | 104<br><b>Rf</b><br>[265] | 105<br><b>Db</b><br>[268] | 106<br>Sg<br>[271]        | 107<br><b>Bh</b><br>[270] | 108<br>Hs<br>[277]        | 109<br>Mt<br>[276]        | 110<br>Ds<br>[281] | 111<br><b>Rg</b><br>[280] | 112<br>Cn<br>[285]        | 113<br><b>Nh</b><br>[286] | 114<br>Fl<br>[289]        | 115<br>Mc<br>[289]        | 116<br>Lv<br>[293]        | 117<br><b>Ts</b><br>[294] | 118<br><b>Og</b><br>[294] |
| * Lanthanide<br>series |                           | nide                                                                            | 57<br>La<br>138.91        | 58<br>Ce<br>140.12        | 59<br><b>Pr</b><br>140.91 | 60<br><b>Nd</b><br>144.24 | 61<br><b>Pm</b><br>[145]  | 62<br><b>Sm</b><br>150.36 | 63<br>Eu<br>151.96 | 64<br><b>Gd</b><br>157.25 | 65<br><b>Tb</b><br>158.93 | 66<br><b>Dy</b><br>162.50 | 67<br><b>Ho</b><br>164.91 | 68<br>Er<br>167.26        | 69<br><b>Tm</b><br>168.91 | 70<br><b>Yb</b><br>173.05 | 71<br><b>Lu</b><br>174.97 |
| # Actinide<br>series   |                           | 89<br>Ac<br>[227]                                                               | 90<br><b>Th</b><br>232.01 | 91<br><b>Pa</b><br>231.04 | 92<br>U<br>238.03         | 93<br><b>Np</b><br>[237]  | 94<br><b>Pu</b><br>[244]  | 95<br>Am<br>[243]         | 96<br>Cm<br>[247]  | 97<br><b>Bk</b><br>[247]  | 98<br>Cf<br>[251]         | 99<br>Es<br>[252]         | 100<br>Fm<br>[257]        | 101<br>Md<br>[258]        | 102<br><b>No</b><br>[259] | 103<br>Lr<br>[262]        |                           |

X.F. Yang, et al. Prog. Part. Nucl. Phys. 129 (2023) 104005.

B. Rebeiro, DESIR Workshop 2024

### Superallowed program at GANIL : Day 1 cases

| SA pair                                     | t <sub>½</sub> (ms) | Laser<br>spectroscopy ? | SPIRAL1 beam<br>yield | S <sup>3</sup> beam yield |  |  |
|---------------------------------------------|---------------------|-------------------------|-----------------------|---------------------------|--|--|
| $^{42}\text{Ti} \rightarrow ^{42}\text{Sc}$ | 208.65              | Yes                     | No                    | 1.6E05                    |  |  |
| $^{46}\text{Cr}{ ightarrow}^{46}\text{V}$   | 260                 | Not yet                 | No                    | 2.6E03                    |  |  |
| <sup>50</sup> Fe→ <sup>50</sup> Mn          | 155                 | Yes                     | No                    | 1.2E02                    |  |  |
| <sup>54</sup> Ni→ <sup>54</sup> Co          | 114.2               | Yes                     | No                    | 8.0E02                    |  |  |
| <sup>66</sup> As→ <sup>66</sup> Ge          | 95.77               | No                      | No                    | 2.2E03                    |  |  |
| <sup>70</sup> Br→ <sup>70</sup> Se          | 79.1                | No                      | 5.4E01                | 6.5E02                    |  |  |

#### **Beyond superallowed 0<sup>+</sup> → 0<sup>+</sup> towards mirror decays**

$$2\mathcal{F}t^{0^+ \to 0^+} = \mathcal{F}t^{mirror}(1 + \frac{f_A}{f_V}\rho^2) = \frac{K}{2V_{ud}^2 G_F^2 (1 + \Delta_V^R)}$$

- In addition to BR, t<sub>1/2</sub> and masses require
   ρ = Gamow-Teller/Fermi mixing ratio
- Requires correlation measurements => MORA
- Beta asymmetry  $(A_{\beta})$  : sensitive to right-handed currents



#### Conclusion

- Superallowed beta decays are excellent probes for beyond Standard Model physics
- Observables require high precision to set any BSM limits
- DESIR : excellent for these studies
- Few roadblocks that need attention
  - (Efficient) laser schemes not available
  - Short half-lives => require faster ejection out of the gas cell

#### Thank you for your attention!

