Perspectives for proton emitters and neutron-deficient refractory elements

Antoine de Roubin & Vladimir Manea

Proton radioactivity

- **Proton dripline:**
	- Nuclear interaction is not enough to bind nucleons together
	- Nucleons are bind by coulomb and centrifugal barrier
- **Proton radioactivity:**
	- Separation energy: $S_p < 0$
	- Proton travel through the barriers by quantum tunneling effect
	- The proton has a given half-live
- **Study of the nuclear structure beyond the dripline:**
	- Unique possibility to probe nuclear structure far from stability
	- Determination of individual states for protons and neutrons
- ∼ **30 proton emitting nuclei are known with Z > 50:**
	- 20 proton emissions from long-lived excited states
	- From $^{109}_{53}$ I (lightest) to $^{185}_{83}$ Bi (heaviest)
	- For most of them the mass has not been measured directly
	- No laser spectroscopy has been done on them

- First clear evidence for proton emission with a measurable half-life:
	- \bullet 53 Co^m (*I* = 19⁻) \rightarrow ⁵²Fe *J. Cerny, J. Esterl, R.A. Gough, R.G. Sextro, Phys. Lett. B33 (1970) 284.*
- First proton emission from nuclei ground state discovered at GSI by Hofmann et al.
	- 151 Lu \rightarrow 150 Yb

S. Hofmann, et al., Z. Phys. A305 (1982) 111.

B. Blank, M.J.G. Borge / Progress in Particle and Nuclear Physics 60 (2008) 403–483

Characterization of the proton radioactivity

To fully characterize the proton radioactivity, one needs:

- Observation of the emitted proton
- The energy released in the decay Q_p
- The angular momentum carried by the proton I_p
- The probability to find the daughter nucleus in its ground state or in a low-lying excited state
	- This probability is the so-called fine structure effect of the proton emission
	- It depends strongly on the shape of the nucleus.

The proton radioactivity lifetime depends on these factors:

- Deformation
- Angular momentum of the emitted proton
- Residual interaction between valence proton and neutron
	- Especially in case of odd-odd nuclei

Characterization of the proton radioactivity

To fully characterize the proton radioactivity, one needs:

- Observation of the emitted proton
- The energy released in the decay Q_p
- The angular momentum carried by the proton I_p
- The probability to find the daughter nucleus in its ground state or in a low-lying excited state
	- This probability is the so-called fine structure effect of the proton emission
	- It depends strongly on the shape of the nucleus.

Q_p released energy:

• Mass measurement

angular momentum:

Laser spectroscopy

Nuclear deformation:

- Laser spectroscopy
- Mass spectrometry

Courtesy of L. Caceres

¹⁴⁶Tm proton emission observation (1993)

Proton radioactivity from 146 Tm. The completion of a sequence of four odd-odd proton emitters

K. Livingston ^a, P.J. Woods ^a, T. Davinson ^a, N.J. Davis ^a, S. Hofmann ^b, A.N. James ^c, R.D. Page ^a, P.J. Sellin ^a and A.C. Shotter ^a

^a Department of Physics, Edinburgh University, Edinburgh EH9 3JZ, UK

^b Gesellschaft für Schwerionenforschung mbH, Darmstadt, Germany

^c Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 3BX, UK

Produced via: ⁹²Mo(⁵⁸Ni, p3n) $Q_1 = 1127(5)$ keV $Q_2 = 1197(5)$ keV

To determin the proton orbital:

The theoretical spectroscopic factor: $S_p^{\text{th}} = (2I_i + 1)^{-1} \langle I_i || a^{\dagger}(j) || I_f \rangle^2$

The experimental spectroscopic factor:

$$
S_p^{\text{exp}} = \frac{T_{1/2}^{\text{calc}}}{T_{1/2}^{\text{exp}}}
$$

 $T_{1/2}^{\text{exp}}$ is the total half-life divided by the fraction of the decay that goes by proton emission

Proton radioactivity from ¹⁴⁶Tm. The completion of a sequence of four odd-odd proton emitters

K. Livingston ^a, P.J. Woods ^a, T. Davinson ^a, N.J. Davis ^a, S. Hofmann ^b, A.N. James ^c, R.D. Page ^a, P.J. Sellin ^a and A.C. Shotter ^a

^a Department of Physics, Edinburgh University, Edinburgh EH9 3JZ, UK

^b Gesellschaft für Schwerionenforschung mbH, Darmstadt, Germany

^c Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 3BX, UK

Produced via: ⁹²Mo(⁵⁸Ni, p3n) $Q_1 = 1127(5)$ keV $Q_2 = 1197(5)$ keV

Comparison of measured half-lives for the decay lines of ¹⁴⁶Tm with WKB calculations using the Becchetti-Greenlees optical potential [9]. Spectroscopic factors of unity have been assumed in all cases.

Proton radioactivity from ¹⁴⁶Tm. The completion of a sequence of four odd-odd proton emitters

K. Livingston ^a, P.J. Woods ^a, T. Davinson ^a, N.J. Davis ^a, S. Hofmann ^b, A.N. James ^c, R.D. Page ^a, P.J. Sellin ^a and A.C. Shotter ^a

^a Department of Physics, Edinburgh University, Edinburgh EH9 3JZ, UK

^b Gesellschaft für Schwerionenforschung mbH, Darmstadt, Germany

^c Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 3BX, UK

Produced via: ⁹²Mo(⁵⁸Ni, p3n) $Q_1 = 1127(5)$ keV $Q_2 = 1197(5)$ keV

- "The proton emitting states and the proton transition rates are well reproduced assuming simple spherical shell model states […]"
- "This behavior is not reproduced in other known region of p emission around $Z = 53 55$ where discrepancies have been attributed to the onset of deformation"
- "It is important to establish new examples of proton emission in the linking region from $Z = 57 67"$
- "This region is expected to be highly deformed and offers the prospect of a systematic investigation of the effect of deformation on the proton decay process"

PHYSICAL REVIEW C 68, 034330 (2003)

Neutron single-particle states populated via proton emission from ¹⁴⁶Tm and ¹⁵⁰Lu

T. N. Ginter, ^{1,2,3,4,*} J. C. Batchelder,³ C. R. Bingham,^{5,6} C. J. Gross,⁶ R. Grzywacz, ^{5,6,7} J. H. Hamilton,¹ Z. Janas,⁷ M. Karny,^{5,7} A. Piechaczek,⁸ A. V. Ramayya,¹ K. P. Rykaczewski,⁶ W. B. Walters,⁹ and E. F. Zganjar⁸

- More proton lines were identified
- The observed decay pattern has been interpreted by using spherical estimates of emission probabilities
- The first observation of fine structure in proton emission from an odd-odd nucleus

PHYSICAL REVIEW C 68, 034330 (2003)

Neutron single-particle states populated via proton emission from ¹⁴⁶Tm and ¹⁵⁰Lu

T. N. Ginter, ^{1,2,3,4,*} J. C. Batchelder,³ C. R. Bingham,^{5,6} C. J. Gross,⁶ R. Grzywacz, ^{5,6,7} J. H. Hamilton,¹ Z. Janas,⁷ M. Karny,^{5,7} A. Piechaczek,⁸ A. V. Ramayya,¹ K. P. Rykaczewski,⁶ W. B. Walters,⁹ and E. F. Zganjar⁸

• Demonstrates for the first time that a proton radioactivity can be used to probe the neutron single particle level structure in the daughter nucleus.

PRL 99, 082502 (2007)

PHYSICAL REVIEW LETTERS

week ending 24 AUGUST 2007

Effect of a Triaxial Nuclear Shape on Proton Tunneling: The Decay and Structure of ¹⁴⁵Tm

D. Seweryniak,¹ B. Blank,^{1,2} M. P. Carpenter,¹ C. N. Davids,¹ T. Davinson,³ S. J. Freeman,⁴ N. Hammond,¹ N. Hoteling,⁵ R. V. F. Janssens,¹ T. L. Khoo,¹ Z. Liu,³ G. Mukherjee,¹ A. Robinson,³ C. Scholey,⁶ S. Sinha,¹ J. Shergur,⁵ K. Starosta,⁷ W. B. Walters,⁵ A. Woehr,⁸ and P. J. Woods³

Islands of triaxiality:

- Specific combinations of single-particle orbitals near the Fermi surface can lead to triaxial shapes
- One of the islands corresponds to the *N* = 76, 77, 78 isotones above the *Z =* 50 proton shell in the vicinity of the proton drip line
	- Near the 145Tm proton emitter.
- The proton emission can be used as a probe of triaxial shapes.
- Comparison between the particle-rotor model and the measured level energies suggests that an asymmetry parameter $\gamma \sim 20^{\circ}$ fits the data best.

P. Moller *et al.,* Phys. Rev. Lett. **97**, 162502 (2006).

PHYSICAL REVIEW C 105, L031302 (2022)

Letter

Fine structure in the odd-odd proton emitter ¹⁴⁴Tm

Pooja Siwach \bullet ,^{1,2} P. Arumugam \bullet ,^{1,*} S. Modi,³ L. S. Ferreira,⁴ and E. Maglione \bullet ⁴

The fine structure in 144Tm:

- Studied within the nonadiabatic quasiparticle approach.
- ¹⁴⁴Tm is found to be highly triaxial with $\gamma \sim 30^{\circ}$

Among around 30 known proton emitters in the region 50 < Z < 82, fine structure is exhibited by:

- ¹³¹Eu
- $141H₀$
- 144,145,146Tm

- Makes them unreliable in drip-line nuclei due to lack of data
- Necessity to probe the nuclear structure properties of the drip-line

PHYSICAL REVIEW C 68, 034330 (2003)

Neutron single-particle states populated via proton emission from ¹⁴⁶Tm and ¹⁵⁰Lu

T. N. Ginter, ^{1,2,3,4,*} J. C. Batchelder,³ C. R. Bingham,^{5,6} C. J. Gross,⁶ R. Grzywacz, ^{5,6,7} J. H. Hamilton,¹ Z. Janas,⁷ M. Karny,^{5,7} A. Piechaczek,⁸ A. V. Ramayya,¹ K. P. Rykaczewski,⁶ W. B. Walters

Proton emission from an oblate nucleus ¹⁵¹Lu

M.G. Procter ^{a, *}, D.M. Cullen ^a, M.J. Taylor ^a, G.A. Alharshan ^a, L.S. Ferreira ^b, E. Maglione ^c, K. Auranen ^d, T. Grahn ^d, P.T. Greenlees ^d, U. Jakobsson ^d, R. Julin ^d, A. Herzáň ^d, J. Konki ^d,

In 150m, gs Lu no evidence for fine structure in the proton emission was found

- The proton emitting ground state in 151 Lu is found to be oblate
	- With a deformation $\beta = -0.11^{+0.02}_{-0.05}$
	- Best evidence to date for proton emission from an oblate nucleus.

CrossMark

Laser spectroscopy beyond the *p*-dripline

X.F. Yang, S.J. Wang, S.G. Wilkins et al., Laser spectroscopy for the study of exotic nuclei, Progress in Particle and Nuclear Physics (2022) doi: https://doi.org/10.1016/j.ppnp.2022.104005.

Status of laser spectroscopy in Tm and Lu isotopes

Tm isotopic chain:

- Latest measurements from 2000 down to ¹⁵³Tm
- No fundamental properties are known below 153Tm
- Nuclear spins are assigned only tentatively
- Laser spectroscopy will enable these to be established unambiguously

Lu isotopic chain:

- Measurements only extend as far down as ¹⁶¹Lu
- No such measurements in the wider region extend below the $N = 82$ shell closure
- To date, no laser spectroscopy has been performed on a proton emitting nuclei!
- What is the charge radius evolution ?
- The spatial extent of the proton distribution is expected to increase
	- Depends on the angular momentum occupied by the unstable proton and S_n

A.E. Barzakh, *et al.,* Phys. Rev. C **61**, 034304 (2000) U. Georg, *et al.,* Eur. Phys. J. A **3,** 225 (1998)

Mass spectrometry beyond the *p*-dripline

PRL 100, 012501 (2008)

PHYSICAL REVIEW LETTERS

week ending
11 JANUARY 2008

First Penning Trap Mass Measurements beyond the Proton Drip Line

C. Rauth, ¹ D. Ackermann, ¹ K. Blaum, ² M. Block, ^{1,*} A. Chaudhuri, ³ Z. Di, ⁴ S. Eliseev, ^{1,5} R. Ferrer, ² D. Habs, ⁶ F. Herfurth, ¹ F.P. Heßberger,¹ S. Hofmann,^{1,7} H.-J. Kluge,¹ G. Maero,¹ A. Martín,¹ G. Marx,³ M. Mukherjee,^{1,†} J. B. Neumayr,⁶ W. R. Plaß,⁴ S. Rahaman,^{1,‡} D. Rodríguez,^{8,§} C. Scheidenberger,^{1,4} L. Schweikhard,³ P. G. Thirolf,⁶ G. Vorobjev, 1,5 and C. Weber^{1,2,‡}

- Direct mass measurement of proton emitting nuclei:
	- To test mass models
	- To study competition between α decay and proton emission (also β for some cases)
	- To determine the proton drip line location
- First direct mass measurement of a proton emitter nuclei
	- $^{147}_{69}$ Tm at SHIPTRAP

mean time of flight (µs)

85

80

75 F

308 ions

-2

 Ω

excit. frequency - 1464242 (Hz)

 -4

 $\overline{^{147}\text{Im}^{++}}$

2

Status of mass spectrometry in Tm and Lu isotopes

PRL 100, 012501 (2008)

PHYSICAL REVIEW LETTERS

week ending
11 JANUARY 2008

First Penning Trap Mass Measurements beyond the Proton Drip Line

C. Rauth, ¹ D. Ackermann, ¹ K. Blaum, ² M. Block, ^{1,*} A. Chaudhuri, ³ Z. Di, ⁴ S. Eliseev, ^{1,5} R. Ferrer, ² D. Habs, ⁶ F. Herfurth, ¹ F.P. Heßberger,¹ S. Hofmann,^{1,7} H.-J. Kluge,¹ G. Maero,¹ A. Martín,¹ G. Marx,³ M. Mukherjee,^{1,†} J.B. Neumayr,⁶ W. R. Plaß,⁴ S. Rahaman,^{1,‡} D. Rodríguez,^{8,§} C. Scheidenberger,^{1,4} L. Schweikhard,³ P. G. Thirolf,⁶ G. Vorobjev, 1,5 and C. Weber^{1,2,‡}

- No mass measurement cross the N = 82 shell except 147,148 Tm at SHIPTRAP
- From direct mass measurement we can derived the proton separation energies and compared to predictions from mass formulas.
- The new values of the proton separation energies are used to determine the location of the proton drip-line more accurately.

Nuclear deformation and fine structure in the p-emission

Courtesy of L. Caceres

- 108 | \rightarrow end of the rp -process (*K. Auranen et al., PLB, 792, 187 (2019)*)
- ¹¹⁷La → strongly deformed nuclei, ∼ 0.3° (*F. Soramel et al., Phys. Rev. C 63, 031304(R) (2001)*)
- ¹⁶⁶Ir → competition between α and p decay (*C.N. Davids et al., Phys. Rev. C* 55, 2255 (1997))

Courtesy V. Manea

 \Box Produced at S³

Mass measurements of heavy elements with 70 < *Z* < 82

- \Box Many masses in the region measured by storage ring mass spectrometry or linked by *Q^α* (uncertainties 30 keV or above).
	- o Opportunity for (high precision) mass spectrometry with Penning traps.

- ❑ Many low-lying isomers especially in the odd-Z chains:
	- o Opportunity for (high-resolution) mass spectrometry with Penning traps and trap-assisted decay spectroscopy.

❑ Many of the elements inaccessible from thick-target facilities.

<https://u.ganil-spiral2.eu/chartbeams/> M. Wang et al., Chinese Phys. C 45, 030003 (2021) T. Radon et al., Nucl. Phys. A 677, 75-99 (2000) Yu. A. Litvinov et al., Nucl. Phys. A 756 3–38 (2005)

28/02/2024 DESIR workshop, GANIL guesthouse 22

85

80

Courtesy V. Manea

Mass measurements of heavy elements with 70 < *Z* < 82

□ Ground-state charge radii exhibit spectacular variations around neutron midshell in the $_{79}$ Au and $_{80}$ Hg isotopic chains.

- \circ Sudden return to sphericity at N = 98-100
- o Charge radii « inflation » present also in the 78 Pt chain
- \circ Almost terra incognita below Z = 78 (for the ground-state trends)

Complementary effect in binding energies is very subtle:

- o Only clearly visibile in **one**-neutron separation energies
- o Odd-N and even-N values behave differently
	- ➢ Interplay between deformation and pairing

Courtesy V. Manea

octupole

130

125

120

Mass measurements of heavy elements with 70 < *Z* < 82

❑ Ground-state charge radii exhibit spectacular variations aroud neutron midshell in the $_{79}$ Au and $_{80}$ Hg isotopic chains.

- \circ Sudden return to sphericity at N = 98-100
- o Charge radii « inflation » present also in the 78 Pt chain
- \circ Almost terra incognita below Z = 78 (for the ground-state trends)
- Complementary effect in binding energies is very subtle:
	- o Only clearly visibile in **one**-neutron separation energies
	- o Odd-N and even-N values behave differently
		- ➢ Interplay between deformation and pairing

Q1: Study the trends of binding energies up to the dripline

Q2: Map the boundary of the region of strong deformation

Correlate the picture with the trends of isomeric states

 2.5 2.0 $1,5$

 0.5 $0,0$

 $-1,0$

-1,5 $-2,0$ $-2,5$

100

fm² 1.0

 δ < r^2 > N , No, 1

J. Cubiss et al., Phys. Rev. Lett. 131, 202501 (2023)

Thank you for your attention !!!

And thanks to Vladimir for the slides !

RF spectroscopy at S³ -LEB – colaboration with KU Leuven

- Future upgrade planned
- Laser-radiofrequency double-resonance spectroscopy
	- Laser are used for state preparation and readout
	- Spectroscopy is preformed using an RF excitation
	- **See R.P. de Groote presentation on Thursday at 2pm !!**

