Perspectives for proton emitters and neutron-deficient refractory elements

Antoine de Roubin & Vladimir Manea

Proton radioactivity

- Proton dripline:
 - Nuclear interaction is not enough to bind nucleons together
 - Nucleons are bind by coulomb and centrifugal barrier
- Proton radioactivity:
 - Separation energy: $S_p < 0$
 - Proton travel through the barriers by quantum tunneling effect
 - The proton has a given half-live
- Study of the nuclear structure beyond the dripline:
 - Unique possibility to probe nuclear structure far from stability
 - Determination of individual states for protons and neutrons
- \sim 30 proton emitting nuclei are known with Z > 50:
 - 20 proton emissions from long-lived excited states
 - From ${}^{109}_{53}$ I (lightest) to ${}^{185}_{83}$ Bi (heaviest)
 - For most of them the mass has not been measured directly
 - No laser spectroscopy has been done on them

- First clear evidence for proton emission with a measurable half-life:
 - ⁵³Co^m (I = 19⁻) → ⁵²Fe
 J. Cerny, J. Esterl, R.A. Gough, R.G. Sextro, Phys. Lett. B33 (1970) 284.
- First proton emission from nuclei ground state discovered at GSI by Hofmann et al.
 - $^{151}Lu \rightarrow ^{150}Yb$

S. Hofmann, et al., Z. Phys. A305 (1982) 111.

B. Blank, M.J.G. Borge / Progress in Particle and Nuclear Physics 60 (2008) 403–483

Characterization of the proton radioactivity

To fully characterize the proton radioactivity, one needs:

- Observation of the emitted proton
- The energy released in the decay Q_p
- The angular momentum carried by the proton I_p
- The probability to find the daughter nucleus in its ground state or in a low-lying excited state
 - This probability is the so-called fine structure effect of the proton emission
 - It depends strongly on the shape of the nucleus.

The proton radioactivity lifetime depends on these factors:

- Deformation
- Angular momentum of the emitted proton
- Residual interaction between valence proton and neutron
 - Especially in case of odd-odd nuclei

Characterization of the proton radioactivity

To fully characterize the proton radioactivity, one needs:

- Observation of the emitted proton
- The energy released in the decay Q_p
- The angular momentum carried by the proton I_p
- The probability to find the daughter nucleus in its ground state or in a low-lying excited state
 - This probability is the so-called fine structure effect of the proton emission
 - It depends strongly on the shape of the nucleus.

\boldsymbol{Q}_p released energy:

Mass measurement

I_p angular momentum:

• Laser spectroscopy

Nuclear deformation:

- Laser spectroscopy
- Mass spectrometry

		I S3 (A/Q=3)	AfterLEB	Fast LEB	I S3 (A/Q=7)	AfterLEB	After Fast LEB
1081	36ms	23	0,00	0,35	115	0,01	1,76
117La	23,5ms	4,45E+00	0,00	0,04	22,25	0,00	0,21
146Tm	68ms	120	0,36	3,12	600	1,80	15,59
151Lu	<u>80,6ms</u>	1,10E+03	3,37	28,68	5500	16,87	143,39
150Lu	45ms	160	0,06	2,97	800	0,32	14,87
	10,5ms	190	0,00	0,28	950	0,00	1,42

Courtesy of L. Caceres

Proton radioactivity from ¹⁴⁶Tm. The completion of a sequence of four odd-odd proton emitters

K. Livingston ^a, P.J. Woods ^a, T. Davinson ^a, N.J. Davis ^a, S. Hofmann ^b, A.N. James ^c, R.D. Page ^a, P.J. Sellin ^a and A.C. Shotter ^a

* Department of Physics, Edinburgh University, Edinburgh EH9 3JZ, UK

^b Gesellschaft für Schwerionenforschung mbH, Darmstadt, Germany

° Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 3BX, UK

Produced via: ${}^{92}Mo({}^{58}Ni, p3n)$ Q₁ = 1127(5) keV Q₂ = 1197(5) keV

To determin the proton orbital:

The theoretical spectroscopic factor: $S_p^{\text{th}} = (2I_i + 1)^{-1} \langle I_i || a^{\dagger}(j) || I_f \rangle^2$

The experimental spectroscopic factor:

$$S_p^{\exp} = \frac{T_{1/2}^{\text{calc}}}{T_{1/2}^{\exp}}$$

 $T_{1/2}^{exp}$ is the total half-life divided by the fraction of the decay that goes by proton emission

Proton radioactivity from ¹⁴⁶Tm. The completion of a sequence of four odd-odd proton emitters

K. Livingston ^a, P.J. Woods ^a, T. Davinson ^a, N.J. Davis ^a, S. Hofmann ^b, A.N. James ^c, R.D. Page ^a, P.J. Sellin ^a and A.C. Shotter ^a

* Department of Physics, Edinburgh University, Edinburgh EH9 3JZ, UK

^b Gesellschaft für Schwerionenforschung mbH, Darmstadt, Germany

° Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 3BX, UK

Produced via: ${}^{92}Mo({}^{58}Ni, p3n)$ Q₁ = 1127(5) keV Q₂ = 1197(5) keV

Comparison of measured half-lives for the decay lines of ¹⁴⁶Tm with WKB calculations using the Becchetti–Greenlees optical potential [9]. Spectroscopic factors of unity have been assumed in all cases.

Proton energy (keV)	Proton decay half-life (ms)						
(KeV)	experiment	h11/2	d _{3/2}	\$ _{1/2}			
1119±5	235±27	374	0.12	0.013			
1189±5	72 ± 23	58	0.019	0.002			

Proton radioactivity from ¹⁴⁶Tm. The completion of a sequence of four odd-odd proton emitters

K. Livingston ^a, P.J. Woods ^a, T. Davinson ^a, N.J. Davis ^a, S. Hofmann ^b, A.N. James ^c, R.D. Page ^a, P.J. Sellin ^a and A.C. Shotter ^a

* Department of Physics, Edinburgh University, Edinburgh EH9 3JZ, UK

^b Gesellschaft für Schwerionenforschung mbH, Darmstadt, Germany

° Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 3BX, UK

Produced via: ${}^{92}Mo({}^{58}Ni, p3n)$ Q₁ = 1127(5) keV Q₂ = 1197(5) keV

- "The proton emitting states and the proton transition rates are well reproduced assuming simple spherical shell model states [...]"
- "This behavior is not reproduced in other known region of p emission around Z = 53 55 where discrepancies have been attributed to the onset of deformation"
- "It is important to establish new examples of proton emission in the linking region from Z = 57 67"
- "This region is expected to be highly deformed and offers the prospect of a systematic investigation of the effect of deformation on the proton decay process"

PHYSICAL REVIEW C 68, 034330 (2003)

Neutron single-particle states populated via proton emission from ¹⁴⁶Tm and ¹⁵⁰Lu

T. N. Ginter, ^{1,2,3,4,*} J. C. Batchelder,³ C. R. Bingham,^{5,6} C. J. Gross,⁶ R. Grzywacz, ^{5,6,7} J. H. Hamilton,¹ Z. Janas,⁷ M. Karny,^{5,7} A. Piechaczek,⁸ A. V. Ramayya,¹ K. P. Rykaczewski,⁶ W. B. Walters,⁹ and E. F. Zganjar⁸

- More proton lines were identified
- The observed decay pattern has been interpreted by using spherical estimates of emission probabilities
- The first observation of fine structure in proton emission from an odd-odd nucleus

PHYSICAL REVIEW C 68, 034330 (2003)

Neutron single-particle states populated via proton emission from ¹⁴⁶Tm and ¹⁵⁰Lu

T. N. Ginter, ^{1,2,3,4,*} J. C. Batchelder,³ C. R. Bingham,^{5,6} C. J. Gross,⁶ R. Grzywacz, ^{5,6,7} J. H. Hamilton,¹ Z. Janas,⁷ M. Karny,^{5,7} A. Piechaczek,⁸ A. V. Ramayya,¹ K. P. Rykaczewski,⁶ W. B. Walters,⁹ and E. F. Zganjar⁸

 Demonstrates for the first time that a proton radioactivity can be used to probe the neutron single particle level structure in the daughter nucleus.

PRL 99, 082502 (2007)

PHYSICAL REVIEW LETTERS

week ending 24 AUGUST 2007

Effect of a Triaxial Nuclear Shape on Proton Tunneling: The Decay and Structure of ¹⁴⁵Tm

D. Seweryniak,¹ B. Blank,^{1,2} M. P. Carpenter,¹ C. N. Davids,¹ T. Davinson,³ S. J. Freeman,⁴ N. Hammond,¹ N. Hoteling,⁵ R. V. F. Janssens,¹ T. L. Khoo,¹ Z. Liu,³ G. Mukherjee,¹ A. Robinson,³ C. Scholey,⁶ S. Sinha,¹ J. Shergur,⁵ K. Starosta,⁷ W. B. Walters,⁵ A. Woehr,⁸ and P. J. Woods³

Islands of triaxiality:

- Specific combinations of single-particle orbitals near the Fermi surface can lead to triaxial shapes
- One of the islands corresponds to the N = 76, 77, 78 isotones
 above the Z = 50 proton shell in the vicinity of the proton drip line
 - Near the 145Tm proton emitter.

- The proton emission can be used as a probe of triaxial shapes.
- Comparison between the particle-rotor model and the measured level energies suggests that an asymmetry parameter $\gamma \sim 20^{\circ}$ fits the data best.

P. Moller et al., Phys. Rev. Lett. 97, 162502 (2006).

PHYSICAL REVIEW C 105, L031302 (2022)

Letter

Fine structure in the odd-odd proton emitter ¹⁴⁴Tm

Pooja Siwach[®],^{1,2} P. Arumugam[®],^{1,*} S. Modi,³ L. S. Ferreira,⁴ and E. Maglione[®]⁴

The fine structure in 144Tm:

- Studied within the nonadiabatic quasiparticle approach.
- ¹⁴⁴Tm is found to be highly triaxial with $\gamma \sim 30^\circ$

Among around 30 known proton emitters in the region 50 < Z < 82, fine structure is exhibited by:

- ¹³¹Eu
- ¹⁴¹Ho
- ^{144,145,146}Tm

- Makes them unreliable in drip-line nuclei due to lack of data
- Necessity to probe the nuclear structure properties of the drip-line

PHYSICAL REVIEW C 68, 034330 (2003)

Neutron single-particle states populated via proton emission from ¹⁴⁶Tm and ¹⁵⁰Lu

T. N. Ginter, ^{1,2,3,4,*} J. C. Batchelder,³ C. R. Bingham, ^{5,6} C. J. Gross,⁶ R. Grzywacz, ^{5,6,7} J. H. Hamilton,¹ Z. Janas,⁷ M. Karny, ^{5,7} A. Piechaczek,⁸ A. V. Ramayya,¹ K. P. Rykaczewski,⁶ W. B. Walters,⁹ and E. F. Zganjar⁸

Proton emission from an oblate nucleus ¹⁵¹Lu

M.G. Procter^{a,*}, D.M. Cullen^a, M.J. Taylor^a, G.A. Alharshan^a, L.S. Ferreira^b, E. Maglione^c, K. Auranen^d, T. Grahn^d, P.T. Greenlees^d, U. Jakobsson^d, R. Julin^d, A. Herzáň^d, J. Konki^d, M. Leino^d, J. Pakarinen^f, J. Partanen^e, P. Peura^d, P. Rahkila^d, P. Ruotsalainen^d, M. Sandzelius^d, J. Sarén^d, S. Stolze^d, C. Scholey^d, J. Sorri^d, J. Uusitalo^d, T. Braunroth^e, E. Ellinger^e, A. Dewald^e, D.T. Joss^f, C. McPeake^f, B. Saygi^f In ^{150m,gs}Lu no evidence for fine structure in the proton emission was found

- The proton emitting ground state in ¹⁵¹Lu is found to be oblate
- With a deformation $\beta = -0.11^{+0.02}_{-0.05}$
- Best evidence to date for proton emission from an oblate nucleus.

CrossMark

Laser spectroscopy beyond the *p*-dripline

X.F. Yang, S.J. Wang, S.G. Wilkins et al., Laser spectroscopy for the study of exotic nuclei, Progress in Particle and Nuclear Physics (2022) doi: https://doi.org/10.1016/j.ppnp.2022.104005.

Status of laser spectroscopy in Tm and Lu isotopes

Tm isotopic chain:

- Latest measurements from 2000 down to ¹⁵³Tm
- No fundamental properties are known below ¹⁵³Tm
- Nuclear spins are assigned only tentatively
- Laser spectroscopy will enable these to be established unambiguously

Lu isotopic chain:

- Measurements only extend as far down as ¹⁶¹Lu
- No such measurements in the wider region extend below the N = 82 shell closure
- To date, no laser spectroscopy has been performed on a proton emitting nuclei !
- What is the charge radius evolution ?
- The spatial extent of the proton distribution is expected to increase
 - Depends on the angular momentum occupied by the unstable proton and S_p

A.E. Barzakh, *et al.*, Phys. Rev. C **61**, 034304 (2000) U. Georg, *et al.*, Eur. Phys. J. A **3**, 225 (1998)

28/02/2024

Mass spectrometry beyond the *p*-dripline

PRL 100, 012501 (2008)

PHYSICAL REVIEW LETTERS

week ending 11 JANUARY 2008

First Penning Trap Mass Measurements beyond the Proton Drip Line

C. Rauth,¹ D. Ackermann,¹ K. Blaum,² M. Block,^{1,*} A. Chaudhuri,³ Z. Di,⁴ S. Eliseev,^{1,5} R. Ferrer,² D. Habs,⁶ F. Herfurth,¹ F. P. Heßberger,¹ S. Hofmann,^{1,7} H.-J. Kluge,¹ G. Maero,¹ A. Martín,¹ G. Marx,³ M. Mukherjee,^{1,†} J. B. Neumayr,⁶ W. R. Plaß,⁴ S. Rahaman,^{1,‡} D. Rodríguez,^{8,§} C. Scheidenberger,^{1,4} L. Schweikhard,³ P. G. Thirolf,⁶ G. Vorobjev,^{1,5} and C. Weber^{1,2,‡}

- Direct mass measurement of proton emitting nuclei: ٠
 - To test mass models
 - To study competition between α decay and proton emission (also β for some cases)
 - To determine the proton drip line location •
- First direct mass measurement of a proton emitter nuclei ٠
 - ¹⁴⁷₆₉Tm at SHIPTRAP

mean time of flight (µs)

85

80

75ŀ

308 ions

-4

-2

0 excit. frequency - 1464242 (Hz)

¹⁴⁷Tm ++

Status of mass spectrometry in Tm and Lu isotopes

PRL 100, 012501 (2008)

PHYSICAL REVIEW LETTERS

week ending 11 JANUARY 2008

First Penning Trap Mass Measurements beyond the Proton Drip Line

C. Rauth,¹ D. Ackermann,¹ K. Blaum,² M. Block,^{1,*} A. Chaudhuri,³ Z. Di,⁴ S. Eliseev,^{1,5} R. Ferrer,² D. Habs,⁶ F. Herfurth,¹ F. P. Heßberger,¹ S. Hofmann,^{1,7} H.-J. Kluge,¹ G. Maero,¹ A. Martín,¹ G. Marx,³ M. Mukherjee,^{1,†} J. B. Neumayr,⁶ W. R. Plaß,⁴ S. Rahaman,^{1,‡} D. Rodríguez,^{8,§} C. Scheidenberger,^{1,4} L. Schweikhard,³ P.G. Thirolf,⁶ G. Vorobjev,^{1,5} and C. Weber^{1,2,‡}

- No mass measurement cross the N = 82 shell except ^{147,148}Tm at SHIPTRAP
- From direct mass measurement we can derived the proton separation energies and compared to predictions from mass formulas.
- The new values of the proton separation energies are used to determine the location of the proton drip-line more accurately.

Nuclear deformation and fine structure in the p-emission

		I S3 (A/Q=3)	AfterLEB	Fast LEB	I S3 (A/Q=7)	AfterLEB	After Fast LEB
1081	36ms	23	0,00	0,35	115	0,01	1,76
117La	23,5ms	4,45E+00	0,00	0,04	22,25	0,00	0,21
146Tm	80ms	120	0,36	3,12	600	1,80	15,59
151Lu	80,6ms	1,10E+03	3,37	28,68	5500	16,87	143,39
150Lu	45ms	160	0,06	2,97	800	0,32	14,87
166lr	10,5ms	190	0,00	0,28	950	0,00	1,42

Courtesy of L. Caceres

- $108I \rightarrow end of the rp$ -process (K. Auranen et al., PLB, **792**, 187 (2019))
- ¹¹⁷La \rightarrow strongly deformed nuclei, $\beta \sim 0.3^{\circ}$ (*F. Soramel et al., Phys. Rev. C* **63**, 031304(*R*) (2001))
- ¹⁶⁶Ir \rightarrow competition between α and p decay (C.N. Davids et al., Phys. Rev. C 55, 2255 (1997))

Courtesy V. Manea

Produced at S³

Unc. >100 keV

Long-lived isomers

Unc. 20-100 keV

Mass measurements of heavy elements with 70 < Z < 82

- □ Many masses in the region measured by storage ring mass spectrometry or linked by Q_{α} (uncertainties 30 keV or above).
 - Opportunity for (<u>high precision</u>) mass spectrometry with Penning traps.

- Many low-lying isomers especially in the odd-Z chains:
 - Opportunity for (<u>high-resolution</u>) mass spectrometry with Penning traps and trap-assisted decay spectroscopy.

Many of the elements inaccessible from thick-target facilities.

https://u.ganil-spiral2.eu/chartbeams/ M. Wang et al., Chinese Phys. C 45, 030003 (2021) T. Radon et al., Nucl. Phys. A 677, 75-99 (2000) Yu. A. Litvinov et al., Nucl. Phys. A 756 3–38 (2005)

28/02/2024

DESIR workshop, GANIL guesthouse

Courtesy V. Manea

Mass measurements of heavy elements with 70 < Z < 82

Ground-state charge radii exhibit spectacular variations around neutron midshell in the 79Au and 80Hg isotopic chains.

- Sudden return to sphericity at N = 98-100
- Charge radii « inflation » present also in the 78Pt chain
- Almost terra incognita below Z = 78 (for the ground-state trends)

Complementary effect in binding energies is very subtle:

- Only clearly visibile in <u>one-</u>neutron separation energies
- o Odd-N and even-N values behave differently
 - Interplay between deformation and pairing

Neutron number

Courtesy V. Manea

Mass measurements of heavy elements with 70 < Z < 82J. Cubiss et al., Phys. Rev. Lett. 131, 202501 (2023)

Ground-state charge radii exhibit spectacular variations aroud neutron midshell in the $_{79}$ Au and $_{80}$ Hg isotopic chains.

- Sudden return to sphericity at N = 98-100 Ο
- Charge radii « inflation » present also in the ₇₈Pt chain
- Almost terra incognita below Z = 78 (for the ground-state trends) Ο
- Complementary effect in binding energies is very subtle:
 - Only clearly visibile in <u>one-neutron separation energies</u>
 - Odd-N and even-N values behave differently 0
 - Interplay between deformation and pairing

Q1: Study the trends of binding energies up to the dripline

Q2: Map the boundary of the region of strong deformation

Correlate the picture with the trends of isomeric states

M. Wang et al., Chinese Phys. C 45, 030003 (2021)

2.5 2.0 1.5 fm^2 1.0 δ<r²>_{N, No}, 1 0.5 0,0 -1,0 ctupole -2.0 -2,5 100 120 125 130 105 110 135 Neutron number Plots provided by A. Barzakh (PNPI) energy (MeV) 74W 76Os 78Pt 80Hg - AME2020 ration e Dar SG One-neutron 9 6

even Z and N

95

100

Neutron number

105

110

115

90

Thank you for your attention !!!

And thanks to Vladimir for the slides !

DESIR workshop, GANIL guesthouse

RF spectroscopy at S³-LEB – colaboration with KU Leuven

- Future upgrade planned
- Laser-radiofrequency double-resonance spectroscopy
 - Laser are used for state preparation and readout
 - Spectroscopy is preformed using an RF excitation
 - See R.P. de Groote presentation on Thursday at 2pm !!

