Coupled laser spectroscopy and mass spectrometry

Antoine de Roubin

- Introduction to the techniques:
 - Laser spectroscopy
 - Mass spectrometry
- Recent results from coupled laser spectroscopy and mass spectrometry techniques
 - Ag campaign
 - Hg and In
- Future perspectives
 - S³-LEB
 - RADRID & JetRIS
 - PI-LIST
 - RAPTOR

Resonant laser ionization spectroscopy

- Gives an extra selection in Z to the ions of interest
 - Only one given element (isomer) is ionised with the chosen combination of photons.
- Increasing the resolution of the system can give access to the hyperfine structure
 - Due to the coupling of the nucleus with the electronic orbital

Resonant laser ionization spectroscopy

- Scan the laser frequency of the transition to measure isotope shifts
 - Information on charge radii
- Hyperfine splitting
 - Give access to deformation, spins and magnetic moments.

Tool for mass separation and/or mass measurement

- Extension of the ion species flight path to obtain a mass separation
 - Constituted with 2 electrostatic mirrors and a drift electrode
- Inside a device of ≈ 1 m ions can travel ≈ 1 km
- The potential on the mirror electrodes has to be very precisely defined

Radial confinement:

strong homogeneous magnetic field

Axial confinement:

electric field

3 ion motions

- Axial v_z
- Magnetron v_{-}
- Reduced cyclotron v_+

 ν_{z}

$$\nu_z = \frac{1}{2\pi} \sqrt{\frac{U_0}{d^2} \frac{q}{m}}$$
$$\nu_{\pm} = \frac{1}{2} \left(\nu_c \pm \sqrt{\nu_c^2 - 2\nu_z^2} \right)$$

$$\nu_c^2 = \nu_-^2 + \nu_+^2 + \nu_z^2$$

Cyclotron frequency

$$\nu_c = \nu_- + \nu_+$$

Cyclotron frequency

q : electric charge B : magnetic field m : mass

<i>N=Z</i> 50					Sn 99	Sn 100 1.16 s	Sn 101 1.97 s	Sn 102 3.8 s	Sn 103 7.0 s	Sn 104 20.8 s	Sn 105 34 s
			96	In 97 50 ms	In 98 37 ms	In 99 3.1 s	In 100 5.83 s	In 101 15.1 s	In 102 23.3 s	In 103 60 s	In 104 1.80 m
	Cd 94	Cd 95 90 ms		Cd 96 880 ms	Cd 97 1.10 s	Cd 98 9.2 s	Cd 99 16 s	Cd 100 49.1 s	Cd 101 1.36 m	Cd 102 5.5 m	Cd 103 7.3 m
Ag 92	Ag 93	Ag 94 37 ms		Ag 95 1.76 s	Ag 96 4.44 s	Ag 97 25.5 s	Ag 98 47.5 s	Ag 99 2.07 m	Ag 100 2.01 m	Ag 101 11.1 m	Ag 102 12.9 m
Pd 91	Pd 92 1.1 s	Р 1	93 s	Pd 94 9.0 s	Pd 95 7.5 s	Pd 96 122 s	Pd 97 3.10 m	Pd 98 17.7 m	Pd 99 21.4 m	Pd 100 3.63 d	Pd 101 8.47 h
						50					

One of the most fasinating nuclei:

- N = Z
 - Fertile ground for testing Shell Model predictions
 - Improving our understanding of the p-n interactions
- High-spin isomerism
- Double proton decay ?

28/02/2024

Production mechanism :

- ¹⁴N(^{nat,92}Mo, 2pxn)Ag
- Silver isotopes: dip well below pps
- Other isotopes: much greater quantities
- ^{nat}Mo get knocked out of target \Rightarrow more contamination
- Cross section for ⁹⁶⁻⁹⁸Ag lower compare to other reactions
 - Development of production and detection techniques made it possible!

N=Z 50				50	Sn 99	Sn 100 1.16 s	Sn 101 1.97 s	Sn 102 3.8 s	Sn 103 7.0 s	Sn 104 20.8 s	Sn 105 34 s
			96	In 97 50 ms	In 98 37 ms	In 99 3.1 s	In 100 5.83 s	In 101 15.1 s	In 102 23.3 s	In 103 60 s	In 104 1.80 m
	Cd 94	Cd 95 90 ms		Cd 96 880 ms	Cd 97 1.10 s	Cd 98 9.2 s	Cd 99 16 s	Cd 100 49.1 s	Cd 101 1.36 m	Cd 102 5.5 m	Cd 103 7.3 m
Ag 92	Ag 93	Ag 94 37 ms		Ag 95 1.76 s	Ag 96 4.44 s	Ag 97 25.5 s	Ag 98 47.5 s	Ag 99 2.07 m	Ag 100 2.01 m	Ag 101 11.1 m	Ag 102 12.9 m
Pd 91	Pd 92 1.1 s	Р 1	93 s	Pd 94 9.0 s	Pd 95 7.5 s	Pd 96 122 s	Pd 97 3.10 m	Pd 98 17.7 m	Pd 99 21.4 m	Pd 100 3.63 d	Pd 101 8,47 h
				2		50					

One of the most fasinating nuclei:

- N = Z
 - Fertile ground for testing Shell Model predictions
 - Improving our understanding of the p-n interactions
- High-spin isomerism
- Double proton decay ?

28/02/2024

Hot cavity catcher laser ion source

- Fast
- High efficiency stopping and extraction of neutral reaction products
- Selective laser ionization

- Ion are separated with PI-ICR and tagged with the frequency of the first resonance step
- PI-ICR enables simultaneous measurements of the hyperfine structure of nulcear stats with a mass differences as low as $\sim 10~keV$
- RIS of ⁹⁶Ag on resonance signal
 - 0.005 cps $\rightarrow \sim \mu barn$
 - Required a low background

M. Reponen, R.P., de Groote et al., Nat Commun 12, 4596 (2021)

Kink at N = 50

- Also observed for other magic nuclei: N = 28, N = 82
- Provides support for N = 50 as a magic number
- Larger increase in charge radius in the Ag chain
 - Perhaps indicating an increasing trend in magnitude towards doubly-magic ¹⁰⁰Sn?
- The charge radii of ^{94,95}Ag are required to understand the trend across
 N = 50

- Magnetic moments of even-*N* isotope indicate a different • mixing on the two sides of N = 50.
- MR-ToF measurement performed on ⁹⁴Ag. •
- Analysis under way

0.01

0.008

0.006

0.004

0.002

Indicate the feasibility of RIS of the 21+ isomer! •

High-precision measurements of:

- nuclear binding and excitation energies
- nuclear spins
- magnetic dipole
- electric quadrupole moments of neutron-rich silver isotopes ^{113–123}Ag

- High-precision mass measurements of ^{95–97}Ag isotopes
- The precise determination of the isomeric excitation energy of ^{96m}Ag serves as a benchmark for ab initio predictions of nuclear properties beyond the ground state

R.P., de Groote *et al.*, PLB **848**, 138352 (2024) & Z. Ge *et al.*, arXiv:2401.07976v1 (2024)

Shape staggering in Hg

Production:

- Proton induced reaction in molten Pd target
- Vapor effuses into the anode of the VADLIS ion source

RILIS mode: no electron impact ionization, Hg⁺ beam purity maximised

Ions transported to one of several possible detection stations:

- Decay spectroscopy: tag on characteristic radiation
- Mass spectrometry: single out one isotope from isobar using its mass

Yields: \sim 1 ion per minute

Flexibility: Tailor the detection to the isotope and beam at hand

B.A. March et al., Nature Phys 14, 1163-1167 (2018)

Shape staggering in Hg and Bi:

- Odd Hg isotopes \rightarrow large charge radii
 - Origin?
 - Interplay between monopole and quadrupole interaction driving a quantum phase transition
- Significant challenge for nuclear theory
- Magnetic moments are key to pin down nuclear configuration to aid the interpretation!

¹⁸⁰Ha

179Hg

178Hg

¹⁷⁷Hg

-16,000

0

-0.6

-0.8

-1.0

-1.2

-1.4

-1.6

 $\delta \langle r^2
angle_{N, N_0} \, ({
m fm}^2)$

Laser frequency detuning (MHz)

α counts

0.2

0.0

-0.2

-0.8

-1.0

-1.2

¹⁸⁵Hg^g_{10.}

176 178 180 182 184 186 188

¹⁸⁸Bi^g

₈₂Pb

98 100 102 104 106 108 110 112 114 116 118 120 N

Mass number

16,000

 $\delta(r^2)^{A-198}$ (fm²) 9.0-9.0¹⁸¹Hg: $\langle \beta_2^2 \rangle^{1/2} = 0.313$

¹⁹⁰Hg: $\langle \beta_2^2 \rangle^{1/2} = 0.174$

This work.as/is 😐 🔾

Previous work, as/is

Mass measurements of ⁹⁹⁻¹⁰¹In

The production of medium mass neutron-deficient nuclides is usually prohibitively difficult at ISOL facilities

Experimental challenge overcome in this work was the production and separation of the ^{99,100,101g,101m}In

- In atoms of interest selectively ionized via RILIS
- First mass separation through the HRS
- Molecular ions ⁸⁰⁻⁸²Sr¹⁹F⁺ predominant in the beam
- MR-ToF MS revolving power $\frac{m}{\Delta m} = 10^5$

•

•

٠

28/02/2024

S³ Low Energy Branch (S³-LEB)

DESIR workshop, GANIL guesthouse

PILGRIM 2 Ge Laser system: detectors Broad band lasers in the gas cell to look for atomic transitions **MR-TOF MS** Beam Narrow band ionization in the gas jet Low temperature ٠ **SEASON decay** Pulse up Low pressure station ٠ (~ 30 kV) High resolution spectroscopy (300 MHz resolution, isomer purification) Laser system P_{ulse} up (~3 KV). ٨ı RFQ cooler Gas cell ALL LAND buncher S³ beam EVRs Neutralized EVRs Photoions S-shape RFQ QMF miniRFQ He: 10⁻² - 10⁻³ mbar RFQs Ar: 200 - 500 mbar Ganil **KU LEUVEN** UNIVERSITÄT MAIN UNIVERSITY OF IVVÄSI

S³ Low Energy Branch (S³-LEB) at LPC (before)

S³ Low Energy Branch (S³-LEB) at LPC (now)

28/02/2024

Radiation Detected Resonance Ionization Spectroscopy Courtesy of S. Reader

30

25

20

15 -

10 -

0 + 1 6.5

Counts (1/25 keV)

RADRIS method:

- Thermalizing of incoming fusion products
- Collectinf onto thin tantalum wire
- Evaporation and two-step photoionization process
- Transport to detector and detection of alpha decay
- High power 100 Hz Laser system

H. Backe *et al.*, Eur. Phys. J. D **45**, 99 (2007) F. Lautenschläger *et al.*, NIMB **383**, 115 (2016)

Isotope Shift of ²⁵²⁻²⁵⁴No & HFS in ^{253,255}No

Courtesy of S. Reader

- Isotope shift for 252-254No measured
- Change in charge radii: Input from atomic theory
 - Mass-shift constant: 1044 GHz u
 - Field-shift parameter: -95.8(7.0) GHz/fm

(R. Beerwerth & S. Fritzsche (MCDF), V. Dzuba, M. Safranove (CI), A. Borschevsky (RCC))

Agrees well with nuclear DFT calculations

In-gas-jet laser spectroscopy on ²⁵⁴No at GSI

Courtesy of S. Reader

Combination of high-efficiency RADRIS with high resolution in-jet methods

Beamtime 2022

First in-gas-jet laser spectroscopy on 254No with improved resolution !

S. Raeder et al., NIM B 463 (2020)(2019) 272 & M. Laatiaoui et al., Nature (London) 538, 495 (2016)

28/02/2024

The high-resolution spectroscopy laser ion source PI-LIST

The PI-LIST ion source:

- Perpendicular laser/atom beam interaction in a RFQ unit
- Spectral linewidth of ~ 250 MHz

Three opeartion modes:

- Ion guide mode: high efficiency, no contamination suppression
- LIST mode: high beam purity, loss in efficiency
- PI-LIST mode: high-resolution spectroscopy

PI-LIST offers the possibility to perform HFS studies directly at the ion source and below the limits of hot cavity atomic vapor

R. Heinke et al., NIM B 541, 8-12 (2023)

28/02/2024

RAPTOR: Resonance ionization spectroscopy And Purification Traps for Optimized spectRoscopy

Collinear resonance ionization spectroscopy device

- Beam energy < 10 keV</p>
- Coupled to JYFLTRAP
 - laser-assisted nuclear-state selective purification
 - post-trap decay spectroscopy experiments
 - high-precision laser-radiofrequency double-resonance experiments

S. Kujanpää et al., NIM B 541, 388-391 (2023)

Thank you for your attention !!!

And thanks to Ruben, Mikael and Sebastian for slides !

