

SPIRAL1 beams for DESIR status and development

Pierre Chauveau

Outline

Introduction : SPIRAL1

- I. Beam production : sources
- II. Beam purity
- III. Batch mode

Conclusion

Introduction - SPIRAL SPIRAL1

• New target Ion Source Systems (FEBIAD)

• The charge breeder

• CIME

- fragmentation cross-section
- diffusion/effusion time (refractory materials/short half-lives)
- ionization efficiency
- operational issues (stability, resilience)

Nanogan III

О

6

8

30

Objective: production of radioactive gaseous ions

27/02/2024

20

FEBIAD

Objective: production of radioactive metalic ions

FEBIAD@SPIRAL1

- 90+ radioactive isotopes/isomers **seen**, including around 60 above 1E5pps (1+).
- Efficient: routinely ≈ 20% on Ar
- Resilient: a 15 days endurance test showed no loss in performance

Latest irradiation test (⁵⁰Cr beam)

- ⁴⁸Cr (1.2E4pps/W), ⁴⁹Cr (2.5E4pps/W), ⁵⁰Mn (3.5E2pps/W)
- very slow Cr release (46min) at low beam power (30W)

Tests for 2024:

- Production of n-deficient isotopes of Fe-Co-Ni (Master student) in July
- Broadband production test at run 3 (Possibly Xe beam) for Cu to Sn isotopes

In the future:

- Fe-Co-Ni beams optimization (PhD student)
- New target (Post-doc + PhD)

MonoNaKe (slide credit P. Jardin)

Objective: production of radioactive alkali ions

First on-line test with a Pt ionizer (2023)

⁸Li⁺ rate = 2,2.10⁴ pps / 830W : TISS efficiency ~10⁻⁵ (In 2007, TISS efficiency ~5.10⁻² with a carbon ionizer)

For 2024:

- Pt and C ionizer will be compared during an off-line test planned in February and March 2024.
- On-line production test in april with the best candidate
- Experiment in june (ACTAR TPC)

TULIP (slide credit P. Jardin)

Objective: production of neutron deficient short-lived isotopes

On-line test 2023: production of ⁷⁴⁻⁷⁸Rb⁺ ions

Masse isotope	T1/2	Taux IBE (pps)	
	S	mars-22	juillet 23
74	64,76 ms		1,7E+01
75	19 s		1,5E+04
76	36,8 s	3,80E+03	2,5E+04
77	3,78 m		1,6E+05
78	5,74 m/	5,80E+04	6,8E+04
	17,66 m		

In 2024:

Off-line test of the TULIP-FEBIAD coupling

In the future:

- Implementation of a rotating target (production x 7).
- On-line production test of metallic ions close to ¹⁰⁰Sn
- Application of the principle to the production of other elements

Expériences/Tests en radioactif à SPIRAL

Expériences/Tests en radioactif à SPIRAL

New layout for SPIRAL1 beams on the chart

https://u.ganil-spiral2.eu/chartbeams/

Conclusion on beam development

Workshop Targets – Ions Sources

laboratoire commun CEA/DRF

A selection -> Isobaric contaminants (δm/m≈1%)

• Z selection – gaz (Nanogan)

- Z selection gaz (Nanogan)
- Z selection alkali (MonoNaKe/Tulip/FEBIAD)

- Z selection gaz (Nanogan)
- Z selection alkali (MonoNaKe/Tulip/FEBIAD)
- Z selection molecules (reactive gaz injection)

- Z selection gaz (Nanogan)
- Z selection alkali (MonoNaKe/Tulip/FEBIAD)
- Z selection molecules (reactive gaz injection)
- A selection HRS ? (δm/m≈1/20000)

Purity – Contamination in the FEBIAD

DESIR – SPIRAL1 wishlist

- β- decay : ⁴⁵Cl,⁴⁶Cl
- β+ decay : ²²Al, ²⁶P, ²⁷S, ³¹Ar, ³⁹Ti, ⁴³Cr
- Mass measurements (nuclear structure) : ⁴⁶Ar, ⁴⁷Ar, ⁴⁸Ar, ⁴⁹Ar, ⁴²Cl, ⁴³Cl, ⁴⁴Cl, ⁴⁵Cl, ⁴⁶Cl, ⁴⁷Cl, ³⁹P, ⁴⁰P, ⁴¹P, ⁴²P, ⁴³P
- Mass measurements, T1/2 and BR (0+ -> 0+ and mirror transitions) : ²¹Na, ²³Mg, ²⁵Al, ²⁹P, ³¹S, ³³Cl, ³⁵Ar, ³⁷K, ³⁹Ca, ⁴¹Sc, ⁴²Ti, ⁴⁶Cr, ⁵⁰Fe, ⁵⁴Ni, ⁵⁸Zn, ⁶²Ge, ⁶⁶Ge, ⁷⁰Br, ⁷⁴Rb, ⁷⁸Y
- 275 : not feasible (1+ rate < 0.1 pps)</pre>

1+ rates from FEBIAD estimate or measurements (FEBIAD/Nanogan/TULIP) when available

Purity – RFQ cooler + HRS estimation

Considerations :

- Perfectly gaussian energy distributions
- R_{HRS,FWHM} ranging from
 - 1000 (No SHIRaC, all slits open, FEBIAD $\Delta E/E$)
 - to 24000 (max R in J. Michaud's article with ΔE=1eV -> SHIRaC's best)

• Cut at +/- 2σ around peak of interest (slit opening ?)

Purity – RFQ cooler + HRS estimation

Conclusions

- SHIRaC is necessary
- High R critical
- Estimation **very** tail-dependant

What we need:

- Updated wish list (with intensities)
- Information on the tail on the high energy side at 2-6σ

Batch Mode Ion source at FRIB (slide credit A. Villari)

- BMIS built on ISOLDE Target-Ion-Source system to provide RIB in stand-alone operation
 - "Target" replaced by samples of radioactive (relatively long living) isotopes
 - VD5 ion source (FEBIAD type)
 - Surface ion source also possible (not employed yet)
 - Future: laser ionization
- Beams for experiments already delivered:
 - ^{7,10}Be, ²⁶Al, ³²Si, ⁷³As delivered for experiments
 - ²²⁹Th, ⁴⁴Ti and other isotopes under development

Collaboration FRIB-GANIL

Batch mode could also be developped at SPIRAL1

Batch Mode Ion source at GANIL?

Which beams ?

Developed at FRIB

- $^{7}\text{Be}(\text{T}_{1/2} = 53.22 \text{ d})$
- ${}^{10}\text{Be}(\text{T}_{1/2} = 1.51\text{E6 y})$
- ${}^{26}\text{AI} (\text{T}_{1/2} = 7.17\text{E5 y})$
- ${}^{32}\text{Si}(\text{T}_{1/2} = 153 \text{ y})$
- 73 As (T_{1/2} = 53.22 d)

Being developed at FRIB

- $^{44}\text{Ti}(\text{T}_{1/2} = 60.0 \text{ y})$
- 229 Th (T_{1/2} = 53.22 d)

At FRIB

- Batch mode Intensities are 5e7 pps on average at FRIB
- Some isotopes are produced in Los-Alamos and chemically purified and prepared in-house

At GANIL ?

Thank you for your attention!

Backup – Beam development

Logic of beams development:

- Accepted proposal/Endorsed Lol
- Probing the community (LoI WS 2016 / WS 2023 / discussions with physicists / what we know we can do)

Shopping list SPIRAL1

- ⁶He
- ^{8,9,11}Li
- ^{10,12}Be
- 10,11**C**
- ¹⁷F
- ²³Ne
- ⁴³Ti
- ⁴⁶Cr
- ⁵⁰Mn

27

• ⁵⁹Fe

Broadband beam development

- ⁵⁵Co
- 56,57Ni
- ^{57,59}Cu
- ⁶⁰Zn
- ⁷⁹Se
- ^{73,75,77}Br
- 73,74,75,76,77Kr
- 72,73,74,75,76**Sr**

Backup - The upgrades on the FEBIAD

16 mm holes in slider Poster ICIS

V. Bosquet

Insulator were the main point of failure.

- Increasing the size of the openings
- Pulling the insulators far from the hot anode

Progress in resilience and reliability

• 3 months in SPIRAL1

- 3 Machine study (2 radioactive + 1 stable)
- 10+ heating cycles
- Efficient: ⁴⁰Ar Efficiency up to 23%
- Resilient: 2 days of irradiation, 15 days at 20%
 ⁴⁰Ar efficiency and 10+ heating cycles without loss of performance
- Stable over time : same results 3 months appart
- Reliable : same results on test bench and SPIRAL
 and between 2 TISSes

Backup - MonoNaKe Observations during the off-line test

Backup - TULIP (slide credit P. Jardin)

Proof of principle: production of ⁷⁴⁻⁷⁸Rb⁺ ions

Objective: production of neutron deficient short-lived isotopes

In-target production by fusion-evaporation Short atom-to-ion transformation time

Last On-line test in July 23

- ²⁰Ne@4,5 MeV/A -> ^{nat}Ni ٠
- ^{74 to 78}Rb⁺ observed •
- Rates up to few 10⁵ pps ٠
- TISS 3 days under irradiation ٠ without damage
- Data under analysis ٠

Backup - TULIP

Objective: production of neutron deficient short-lived isotopes

Data currently under analysis

Backup - TULIP

Final objective : production of metallic ions around ¹⁰⁰Sn

Next steps:

- coupling the TULIP cavity to a FEBIAD ion source. Test planned by end of 2023
- Implementation of a rotating target (production x 7). Test planned by 2d semester of 2023
- On-line production test of metallic ions around ¹⁰⁰Sn. When ⁵⁰Cr beam available
- Application of the principle to the production of other elements

Purity – SHIRAC + HRS estimation

Mass spectrum