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Motivation For Decreasing Energy Threshold

e More events!

e Bridge the gap towards IceCube Optical

Measurements
o  GRAND threshold ~100PeV compared to
IceCube upper bound ~10PeV
e Large uncertainties for Ev > 100PeV

o Tau energy: ~10 from neutrino propagation
o Shower energy: ~2 from decay distribution
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e Pros of phasing: eesccee:
o SNRincreased by VN, the number of phased antennas | i : 101%
o Improved directional reconstruction ~4000 - eccce0e )

o  Exclusion of noisy regions Senee ceceeee 0
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o With a set number of antennas, smaller overall footprint E = 10EeV, 60 = 80°

o Missing Cherenkov pattern

e Minimum number of antennas for phasing?
o Antennas spaced by ~1km, view same portion of the shower only for very horizontal events
o 3 antennas lowers threshold by factor 1.7, and allows for directional reconstruction
m Improves reconstructions for UHECR with zenith angles < 70°
o  Diminishing returns for N > 10
o Include phasing infills sporadically throughout the array, instead of everywhere?

e Optimal positioning of phased antennas?



Array Layout Suggestion

e Designate fraction of total antennas to be phased in infill arrays (15%?)
o  Minimally changes UHECR sensitivity

e Optimal locations for phased arrays targeting Ev < 100PeV:
o Upgoing v:
m Altitudes around 2km provide increased exposure
o Downgoing Vv (for certain topographies):
m Tau decay length < 5km: nearby mountains maximize intensity
m Near ground?
o Radio quiet (duh)
e Antarctic Mountain?

o Askaryan emission possible? Removes Earth emergence probability factor, and opens all 3
flavors



Trigger conditions

At fixed shower energy

- SNR criteria — depends on local conditions but ultimately bound to galactic or
thermal noise — noise mitigations

- Other criteria — impulsivity, polarisation, etc.
- Sub-threshold analysis — template fitting / ML (online or not ?)



Denoising/ML?

e Trained with simulations (COREAS/ZHAireS), real background, and external triggers
o Early training can guide minimal energy
o  Scintillator station for verification?

e In a prototype station with 3 antennas co-located with IceTop, 3X more events
o Beamforming less necessary?
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Example of denoising of a radio pulse with neural networks. An air-shower radio pulse simulated by CoREAS with noise is identified and reconstructed using a CNN
A. Rehman, A. Coleman, F. G. Schr'oder, and D. Kostunin, “Classification and Denoising of Cosmic-Ray Radio Signals using Deep Learning,” PoS, vol. ICRC2021, p. 417, 2021.



