Lowering Energy Threshold for GRAND/BEACON

Austin Cummings, Valentin Decoene

Motivation For Decreasing Energy Threshold

- More events!
- Bridge the gap towards IceCube Optical Measurements
 - GRAND threshold ~100PeV compared to IceCube upper bound ~10PeV
- Large uncertainties for $E_v > 100 PeV$
 - Tau energy: ~10 from neutrino propagation
 - Shower energy: ~2 from decay distribution

 We should do this without completely sacrificing UHECR statistics above 10EeV

Motivation For Decreasing Energy Threshold

- More events!
- Bridge the gap towards IceCube Optical Measurements
 - GRAND threshold ~100PeV compared to IceCube upper bound ~10PeV
- Large uncertainties for $E_{\nu} > 100 PeV$
 - Tau energy: ~10 from neutrino propagation
 - Shower energy: ~2 from decay distribution

 We should do this without completely sacrificing UHECR statistics above 10EeV

Antenna Phasing/Beamforming

- Pros of phasing:
 - \circ SNR increased by $\sqrt{N},$ the number of phased antennas
 - Improved directional reconstruction
 - Exclusion of noisy regions
- Cons of phasing:
 - With a set number of antennas, smaller overall footprint
 - Missing Cherenkov pattern
- Minimum number of antennas for phasing?
 - Antennas spaced by ~1km, view same portion of the shower only for very horizontal events
 - 3 antennas lowers threshold by factor 1.7, and allows for directional reconstruction
 - Improves reconstructions for UHECR with zenith angles < 70°
 - Diminishing returns for N > 10
 - Include phasing infills sporadically throughout the array, instead of everywhere?
- Optimal positioning of phased antennas?

Array Layout Suggestion

- Designate fraction of total antennas to be phased in infill arrays (15%?)
 - Minimally changes UHECR sensitivity
- Optimal locations for phased arrays targeting $E_v < 100 PeV$:
 - Upgoing v:
 - Altitudes around 2km provide increased exposure
 - \circ Downgoing v (for certain topographies):
 - Tau decay length < 5km: nearby mountains maximize intensity
 - Near ground?
 - Radio quiet (duh)
- Antarctic Mountain?
 - Askaryan emission possible? Removes Earth emergence probability factor, and opens all 3 flavors

Trigger conditions

At fixed shower energy

- SNR criteria \rightarrow depends on local conditions but ultimately bound to galactic or thermal noise \rightarrow noise mitigations
- Other criteria \rightarrow impulsivity, polarisation, etc.
- Sub-threshold analysis \rightarrow template fitting / ML (online or not ?)

Denoising/ML?

- Trained with simulations (COREAS/ZHAireS), real background, and external triggers
 - Early training can guide minimal energy
 - Scintillator station for verification?
- In a prototype station with 3 antennas co-located with IceTop, 3X more events
 - Beamforming less necessary?

Example of denoising of a radio pulse with neural networks. An air-shower radio pulse simulated by CoREAS with noise is identified and reconstructed using a CNN *A. Rehman, A. Coleman, F. G. Schr* öder, and *D. Kostunin, "Classification and Denoising of Cosmic-Ray Radio Signals using Deep Learning," PoS, vol. ICRC2021, p. 417, 2021.*