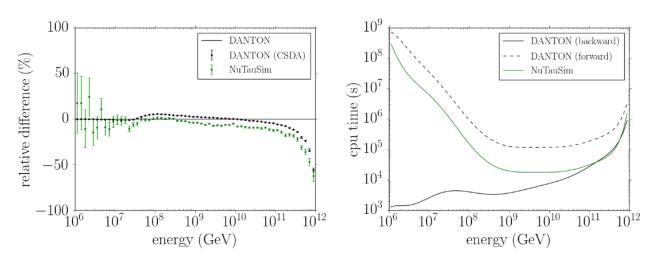
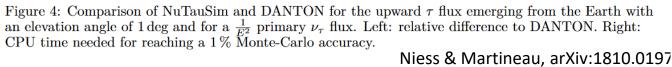
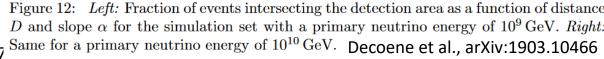
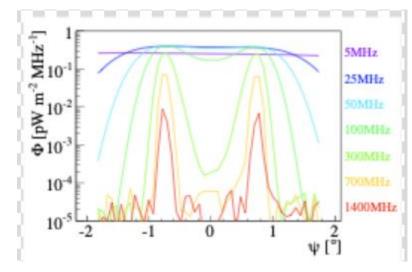
Maximizing aperture while minimizing instrumentation and energy threshold I

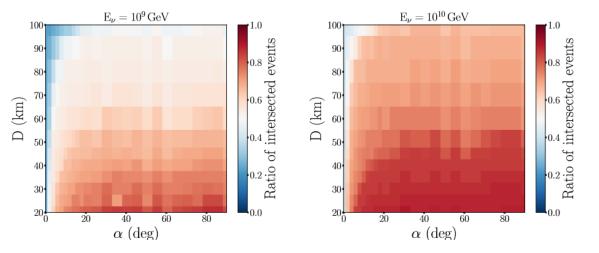

GRAND-BEACON workshop


Penn State, Jan 11 2024


Olivier Martineau & Kaeli Hugues

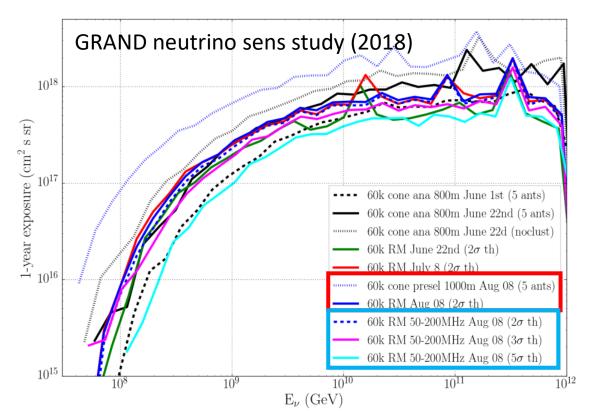

Q1: What is the best case scenario?

- What is the effective area of a <u>perfect</u> detector (ie detector 100% efficiency for all realistic* showers)?
 - Realistic \Leftrightarrow realistic opening angle & distance to τ decay point
 - Benchmark existing simulation tools?
 - Include topography as parameter?



Alvarez-Muniz et al, arXiv:1502.02117

Q2: how far from the best case scenario can reality be?


- Handles?
 - Topography (a la BEACON, a la GRAND, ...)
 - Improved trigger threshold:
 - Phased array?
 - Denser arrays?
 - Reducing background noise
 - Clever trigger methods (ML, signal processing, etc...)

\checkmark Improving v sensitivity?

- Role of topography: up to x3 (see eg Decoene et al., arXiv:1903.10466)
- Trigger threshold improvement could surely allow to increase effective area,

BUT probably by factor of a few only (at least for $E_v \ge 10^{17} \text{eV}$)

- GRAND sims: $5\sigma \rightarrow 3\sigma$: $A_{eff} \times 1.6$; $5\sigma \rightarrow 2\sigma$: $A_{eff} \times 2.5$
- Bottom line: v-induced EAS <u>are seldom!...</u> And we already detect a significant fraction with standard trig (TBC).
 - GRAND sims : factor ~2-3 between full efficient & 2σ threshold
 - Pieroni PhD with similar results
- → Discuss more at « effective area » session!

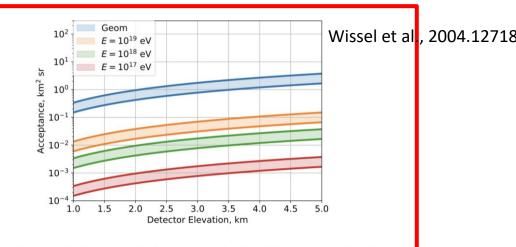


Figure 2. Order of magnitude estimates for the acceptance of a single high elevation station. The blue band shows the maximum geometric acceptance based on Eqn 3.5, assuming a factor of 1/3 to account for an expected 120° field of view. The acceptance at three neutrino energies \mathcal{E}_{ν} is estimated from peak p_{exit} values of Ref. [40]. The width of each band illustrates the impact of the maximum view angle over which the detector can trigger θ_{cut} , assuming a range of $[1.0^\circ, 1.5^\circ]$.

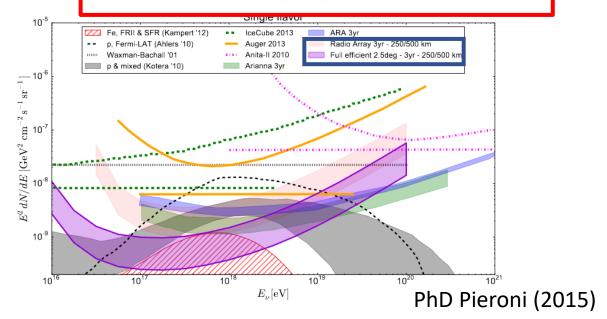


Figura 11.28: Se agrega como banda violeta a la figura 11.27 el límite diferencial al 90 % C.L. que presentaría un detector 100 % eficiente entre 90° y 92.5°, con un tamaño de entre 250 km y 500 km de lado y para 3 años de medición. Esta banda permite formar una idea los límites que tiene la detección de neutrinos con SD de antenas de radio.