

Welcome to Penn State

Hosted by the Institute for Gravitation and the Cosmos

•and the Center for Multimessenger Astrophysics

GRAND-BEACON Workshop: General information

• Program

https://indico.in2p3.fr/event/grand-beacon

• Venue

Room 320 (3rd floor) at Whitmore Lab., 4575 Pollock Rd, University Park. In case of problems, call/text Whatsapp Steph +1 (773) 255-4919 or Whatsapp Kumiko +33 677799395.

• Zoom links

General links will be posted on the website https://indico.in2p3.fr/event/grand-beacon Links for the closed sessions will be sent out to registered participants.

GRAND-BEACON Workshop: Dinner

Workshop Dinner (Wed. 10 Jan. - tonight)
 Big Springs Spirits, in the historical town of Bellefonte
 <u>https://www.bigspringspirits.com/bellefonte</u>
 We will go there together by bus, take a tasting tour of the

Workshop dinner: meet @6:15pm <u>sharp</u> in front of the Thomas Building —> On Polluck Rd northeast of Shortlidge Rd

Let us know if you are driving by yourself!

The Sessions

Overviews of several experiments focussed on challenges/flaws/advantages/lessons

Open sessions in hybrid mode

everyday: a report of the discussions

Closed brainstorming sessions with limited hybrid mode

2 chairs - maximize discussions

Wed. 10/01 9am-5:15pm + dinner @6pm

09:00	Opening: objectives of this workshop	
	Whitmore 320, Penn State University	09:00 - 09:30
	Overviews: GRAND, BEACON, other exps.	
10:00		
11:00	Whitmore 320, Penn State University	09:30 - 11:20
	Coffee break	
	Whitmore 320, Penn State University	11:20 - 11:45
	Open discussion Kumiko Ko	otera, Olivier Martineau
12:00		
	Whitmore 320, Penn State University	11:45 - 12:30
	Lunch	
13:00		
	Whitmore 320, Penn State University	12:30 - 14:00

14:00	Brainstorming: Science targets	ohta Murase,	Kumiko Kot
	Whitmore 320, Penn State University		14:00 - 14:3
	Brainstorming: Maximizing science case: balancing neutrino science, cosmic ray science, and o Kumiko Kotera, Kohta Murase	other topics	
15:00	Whitmore 320, Penn State University		14:30 - 15::
	Coffee break		
	Whitmore 320, Penn State University		15:15 - 15:4
	Brainstorming: Maximizing aperture while minimizing instrumentation and energy threshold I. Olivier Martineau, Kaeli Hughes		
16:00			
	Whitmore 320, Penn State University		15:45 - 16:4
	Brainstorming: RFI Mitigation	Kathryn Pl	ant, Tim Hu
17:00	Whitmore 320, Penn State University		16:45 - 17::

The Sessions

Open sessions in hybrid mode everyday: a report of the discussions

Closed brainstorming sessions with limited hybrid mode 2 chairs - maximize discussions

Thu. 11/01 9am-5pm (lunch: 12:30-2pm)

09:00	Brainstorming: Designing radio detectors efficient towards the horizon	Tim Huege, Frank Schroeder					
	Whitmore 320, Penn State University	09:00 - 10:00					
10:00	Brainstorming: Advantages of phased vs unphased arrays	Valentin Decoene, Stephanie Wissel					
	Whitmore 320, Penn State University	10:00 - 11:00					
11:00	Coffee break						
	Whitmore 320, Penn State University	11:00 - 11:30					
	Open discussion: Report & online brainstorming	Tim Huege, Kumiko Kotera					
12:00							
	Whitmore 320, Penn State University	11:30 - 12:30					
	Lunch						
13:00							
	Whitmore 320, Penn State University	12:30 - 14:00					

14:00	Brainstorming: Lowering energy threshold	Valentin Decoene, Austin (
	Whitmore 320, Penn State University	14:0
15:00	Brainstorming: Maximizing aperture while minimizing instrumentation and energy th Austin Cummings, Valentin Decoene	reshold II.
	Coffee break	
	Whitmore 320, Penn State University	15:30
16:00	Brainstorming: DAQ for very large scale detectors; Sustainability; Optimizing power Cosmin Deaconu, Olivier Martineau	and comms distribution
	Whitmore 320, Penn State University	16:00

The Sessions

Fri. 11/01 9am-3:30pm (lunch: 12:30-2pm)

End: 3:30pm

Closed final brainstorming session

09:00	Brainstorming: Frequency range (science, commercial availability, signal discrimination) Frank Schroeder, Tim H
10:00	Whitmore 320, Penn State University	09:00 - 10 Kumiko Kotera, Stephania W
	Brainstonning. Gathering thoughts & Open topics	Kumiko Kolera, Slephanie W
	Whitmore 320, Penn State University	10:00 - 11
11:00	Coffee break	
	Whitmore 320, Penn State University	11:00 - 11
	Open discussion: Report & online brainstorming	Olivier Martineau, Stephanie W
12:00		
	Whitmore 320, Penn State University	11:30 - 12
	Lunch	
13:00		
	Whitmore 320, Penn State University	12:30 - 14
14:00	Brainstorming: Final brainstorming, plans & closeout	Kumiko Kotera, Stephanie W
15:00		
	Whitmore 320, Penn State University	14:00 - 15

GRAND-BEACON Workshop: Dinner

Workshop Dinner (Wed. 10 Jan. - tonight)
 Big Springs Spirits, in the historical town of Bellefonte
 <u>https://www.bigspringspirits.com/bellefonte</u>
 We will go there together by bus, take a tasting tour of the

Workshop dinner: meet @6:15pm <u>sharp</u> in front of the Thomas Building —> On Polluck Rd northeast of Shortlidge Rd

Let us know if you are driving by yourself!

Goals of this workshop

1. What do we want to achieve?

- scientifically? Wed. PM
- technically? *Wed. AM + all week*
- 2. What are the flaws and advantages of existing or projected instruments? experimental overview Wed. AM

3. How can we achieve our goals of point 1?

Brainstorming Sessions 2.5 days

- Maximizing aperture while minimizing instrumentation and energy threshold
- RFI mitigation
- Designing radio detectors efficient towards the horizon
- Advantage of phased-unphased arrays
- Lowering energy threshold
- accurate time synchronization of distributed detectors
- Frequency range (science, commercial availability, signal discrimination)

- DAQ for very large scale detectors; Sustainability; Optimizing power and comms distribution,

Evidence for High-Energy **Extraterrestrial Neutrinos** at the leecube Detector

IceCube Collaboration*

We report on results of an all-sky search for high-energy neutrino events interacting within the

PRL 116, 061102 (2016)

Selected for a Viewpoint in *Physics* PHYSICAL REVIEW LETTERS

Binary Black Hole Morgor

B. P. Abbott *et al.** (LIGO Scientific Collaboration and Virgo Collaboration) (Received 21 January 2016; published 11 February 2016)

On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10^{-21} . It matches the waveform

THE ASTROPHYSICAL JOURNAL LETTERS, 848:L13 (27pp), 2017 October 20

© 2017. The American Astronomical Society.

https://doi.org/10.3847/2041-8213/aa920c

OPENACCESS NEUTRINOS or another source **Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A**

LIGO Scientific Collaboration and Virgo Collaboration, Fermi Gamma-ray Burst Monitor, and INTEGRAL (See the end matter for the full list of authors.)

Received 2017 October 6; revised 2017 October 9; accepted 2017 October 9; published 2017 October 16

Abstract

On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and

Scientifically? Wed. PM (Kohta & Kumiko)

Program

- Science Targets
- Maximizing science case: balancing neutrino science, cosmic ray science, and other topics

Questions

- We want to dream
- We want to be funded
- Trade-off? Adequacy?
- Experimental needs for the priority science case?
- Any ancillary Science Case? At what cost?

What do we want to achieve? Technically? all days

Why Radio In-Air?

- Because that's our expertise... ;-p
- Benchmarked/mature technique for vertical showers
- Robust, scalable, cost-efficient --> in principle ideal for large apertures
- Radio In-Ice is complementary and has its drawbacks —> good to move in parallel

Ideas from OpenAl

future generation ultra-high energy neutrino radio detector

Seems like the human brain can still do better...

large-scale ultra-high energy neutrino radio antenna array Program

Radio in-air

- Robustness, simplicity, size, ...
- Are there unavoidable technical constraints?

deploying 1000s of radio antennas in the desert from a helicopter

giant radio array for neutrino detection

Some background - Why now?

GRAND and BEACON prototypes are (almost) running

- confident that detection techniques will be validated

- time to think of the larger-scale phase

• In Europe: many other experiments are finishing their commissioning or R&D phase

- learn from these experiments
- interest for next R&D and manpower will be available

SCIENTIFIC DOMAIN	PROJECT	2021	2022	2023	.023		20		2024		2025	
	HESS	Operations										
	PAO	Operations										
ASTROPARTICLE	Adv Virgo+	Construction			Operations - O	4	Construction					
PHYSICS	СТА	Construction										
	LISA	Construction										
	ET project	Design study										
	LSST	Construction					Operations					
	Euclid	Construction							Operations			
DARK ENERGY	LiteBird project	Construction										
	CMB-S4 project	Design study							Construction			

No other large-scale ground detector planned

- What next after Auger?
- GCOS: unclear perspectives and likely to be merged with this project
- IceCube-Gen2 Radio is complementary + aligned timescale?
- The existing community will need a next project

Roadmap of projected

Some background - Our assets

• A good timing - NOW is the time to position ourselves

- in Europe: many experiments finishing their R&D phases -- interest & personpower
- no next generation large-scale ground detector validated yet
- unclear perspectives in-ice
- multi-messenger astronomy is the new trend

Strong Science Case & Technical Challenges - Frontier challenge (energy frontier, "new" particle frontier)

- MM astronomy is the trend
- production could trigger interest

• We can build on existing grounds

- Expertise from prototypes —> technically important + for funding agencies
- An excellent existing infrastructure to build on:
- At the cross-road of several existing communities with excellent expertise

- Radio detection technique + large scale comms/data volume challenges + later industrial

—> the Auger site is looking for new projects. Could host a mid-scale array (~1000 antennas)

—> radio, large-scale arrays, data analysis, particle physics, MM alerts...

Some background - Political situation

GRAND

- Mid-term review of the **APPEC** strategy
- Roadmap of Astronet
- http://cds.cern.ch/record/2691414
- Nikhef strategic plan 2017-2022 and beyond, p. 43 <u>https://www.nikhef.nl/strategisch-plan/</u>
- CNRS Prospective INSU Astronomie & Astrophysique 2020-2025, p. 34 https://www.insu.cnrs.fr/sites/institut_insu/files/news/2021-04/Prospective_INSU_AA_2019.pdf

IceCube-Gen2, RNO-G, KM3Net, GCOS

- Strong community around IceCube-Gen2: Germany, Belgium, ...
- Around radio + large arrays: Netherlands, Germany, Belgium, France

In Latin America - GRAND

• Latin American Strategy for Research Infrastructures for High Energy, Cosmology, Astroparticle Physics LASF4RI for HECAP https://drive.google.com/file/d/1muqdLMMQaZ-yBxFdYLPuCpOQgeSfsvtV/ view

• Physics briefing book: Input for the European Strategy for Particle Physics Update 2020, section 7.3

Some background - Political situation

Astro2020 Decadal Survey

- Priority Area: New Windows on the Dynamic Universe
- Key recommendations:
 - Time domain / multi-messenger program
 - IceCube-Gen2 endorsed but since not funded by NSF Astrophysics not included in the planning (NSF Physics) instead...)

P5 Report

- Neutrinos are included as a key element in the "Decipher the Quantum Realm"
- Recommend a portfolio of major projects that collectively study nearly all fundamental constituents of the universe and their interactions
 - MM Astrophysics noted for unique role funded via NSF Physics
 - CMB-S4 and IceCube-Gen2 heavily supported in the Cosmic Frontier

Novel Mid-Scale Funding

• Midscale funding *newly* available for \$4-50M range as a part of NSF's Big Ideas and decadal surveys

In the USA

Z

Figure 1 – Program and Timeline in Baseline Scenario (B)

P: Primary S: Secondary Index: Operation Construction R&D, Research Possible acceleration/expansion for more favorable budget situations

Science Experiments			eutrinos	Higgs Boson	Dark Matter	Cosmic volution	Direct vidence	lmprints	strophys
Timeline	2024	2034			Science	Driver	S		sics
LHC				Р	Р		Р	Р	
LZ, XENONnT					Р				
NOvA/T2K			Р				S		
SBN			Р				S		
DESI/DESI-II			S		S	Р			Р
Belle II					S		S	Р	
SuperCDMS					Р				
Rubin/LSST & DESC			S		S	Р			Р
Mu2e								Р	
DarkSide-20k					Р				
HL-LHC				Р	Р		Р	Р	
DUNE Phase I			Р				S	S	S
CMB-S4			S		S	Р			Р
СТА					S				Р
G3 Dark Matter §			S		Р				
IceCube-Gen2			Р		S				Р
DUNE FD3			Р				S	S	S
DUNE MCND			Р				S	S	
Higgs factory §				Р	S		Р	Р	
DUNE FD4 §			Р				S	S	S
Spec-S5 §			S		S	Р			Р
Mu2e-II								Р	
Multi-TeV §	D	EMONSTRATOR		Р	Р		Р	S	
LIM			S		Р	Р			P
									-

Difficulties in finding large geographical sites meeting criteria

- usually local government very enthusiastic - military/too many landowners/natural reserve permits/... - installation & maintenance & site access issues —> limit actual geographical implantation and increase aperture by geometry? -> improve trigger efficiency to deploy on noisier sites?

Number of channels

- detection unit robustness, simplicity, power consumption
- production, maintenance, shipping volumes
- data volume
- trigger complexity & RFI robustness

Complexity

- trigger
- distributed comms vs independent arrays
- mechanics
- logistics

Technical challenges with current experiments *to be discussed in the Open Discussion*

... Add your thoughts!

Exponential versus linear scaling

- Very hard to think exponentially for humans because it is counterintuitive!
- Where exponential scaling applies, big numbers are not a problem.
 - Cost of solar and wind power drops exponentially.
 - Cost of battery capacity drops exponentially. lacksquare
 - Computing capacity grows exponentially (Moore's law). •
 - Communications bandwidth? Not sure. Fast growth for sure.
 - ...?
- Where linear scaling applies, big numbers seem prohibitive.
 - Cost of mechanics (steel, ...). ullet
 - Cost of deployment ("classical way"). ullet
 - Cost of maintenance (i.e., need "maintenance free"). ullet
 - Cost of personpower.
 - ...?

to be discussed in the Open Discussion

rence Berkelev National Laboratory, 2018.³ RethinkX projections 2019-2030

Source: BNEF, 2019. 4,7,8 RethinkX projections 2020-2030

Brainstorming Sessions

- Science targets and maximizing science case
- Maximizing aperture while minimizing instrumentation and energy threshold
- RFI mitigation
- Designing radio detectors efficient towards the horizon
- Advantage of phased-unphased arrays
- Lowering energy threshold
- DAQ for very large scale detectors; Sustainability; Optimizing power and comms distribution, accurate time synchronization of distributed detectors
- Frequency range (science, commercial availability, signal discrimination)

Chairs

Kohta & Kumiko Steph & Olivier Kathryn & Tim Tim & Frank Valentin & Kaeli Austin & Valentin Olivier, Cosmin & Kathryn

Frank & Tim

