

BEACON OVERVIEW

Stephanie Wissel BEACON-GRAND Workshop 11 Jan 2024

BEACON: Beamforming Elevated Array for COsmic Neutrinos

EARTH-SKIMMING NEUTRINO RADIO CHARACTERISTICS

Geomagnetic emission: separation of charges in shower due to Lorentz force.

 $\overrightarrow{E} \propto \overrightarrow{v} \times \overrightarrow{B}$

- > Polarization correlated with Earth's magnetic field
- > Also some radially polarized emission from charge excess in the shower → changes beam ("Askaryan radiation")
- Impulsive (fast and broadband): Strongest at low frequencies (<100 MHz); Signal peaks at Cherenkov angle at high frequencies (>100 MHz)
- Signal concentrated near the horizon due to exit probabilities

PHASED ARRAYS ON A MOUNTAIN

PHASED ARRAYS ON A MOUNTAIN

 Increase station gain by coherently summing multiple antennas

 $G = 10\log_{10}(N_{ant}) + G_{ant}$

Tunable field of view

Form many beams to cover full horizon, but tune in only to the very edge

D. Southall, BEACON arXiv:2206.09660

ADVANTAGES OF THE BEACON CONCEPT

► Phasing

- > Coherently summing signals in an array improves SNR by a factor of $\sqrt{N_{antennas}}$
- > Pointing allows for lower trigger thresholds, tunable beams at the horizon, **and** directional rejection of noise
- > <u>N.B.</u> requires compact trigger arrays (spacing ~10's of meters)

> High elevation mountain ranges

- Increased viewing area
- > Multiple independent antenna arrays can be built to linearly improve the sensitivity
- > <u>N.B.</u> requires large station spacings to be truly independent (6-7 km at 1 EeV for 10% overlap)

> Target energy range is an important design consideration

- > 10 PeV to 1 EeV is a sweet spot between astrophysical and cosmogenic fluxes
- > Frequency range, elevation chosen depends on this
- Can design different detectors for a broader or more targeted energy range

MOUNTAINTOP PHASED ARRAY DESIGN

So how do I design my mountaintop phased array?

Frequency Range

- Elevation
- Phased Trigger
 Design

BEACON REFERENCE DESIGNS

- ➤ 3 km Elevation, 120° FOV
- 30-80 MHz or 200-1200 MHz, depending on site RFI
 - 30-80 MHz: Electrically short dipoles 1.8 dBi, isotropic
 - 200-1200 MHz: High-gain broadband antennas (horns, LPDAs) 10 dBi, isotropic
- ► 10 phased antennas in the trigger per station
- Stations are spaced so that <10% overlap in effective volume

FREQUENCY RANGE IMPACT

- Wissel JCAP 2020 arXiv:2004:12718
- Comparable effective area for the two frequency bands, but lower frequencies are slightly better at high energies and high frequencies slightly better at threshold
- RFI at sites may determine optimal band (although 30-80 MHz typically cleaner)

TEST DESIGNS AGAINST FLUX MODELS

How HIGH?

HOW MANY ANTENNAS?

- Is it better to build <u>bigger</u> phased arrays or <u>more</u> independent stations?
 - Minimum 3 antennas for phased advantage
 - > No. neutrinos linear with phased array gain
 - Harder models prefer lower frequency design
 - Softer models require large phased arrays
 O(100) for appreciable neutrino rate
- Conclude that O(10) phased
 antennas with 10x more independent stations is preferred

Wissel

30-80 MHz, including overlap, 3-km spacing, Zeolla ICRC 2023

BEACON PROTOTYPE ARRAY

 Prototype at the White Mountain Research Station has been running since 2018 at 3.8 km (2.4 km prominence)

► Goals:

- ► validate sensitivity estimates with cosmic ray search
- ► test phased arrays at high elevation
- manage backgrounds and operate continuously

BEACON'S PROTOTYPES

- ► 2018: LWA antennas
- ► 2019-2022: custom dipoles + 7-bit 1GSa/s phased array DAQ
- ► 8 antennas (H&V) on 4 masts
- ► Power ~50 W

▶ 2023

60

Noise Values Sun

Galaxy

0.8

0.6

-90

1.0

- Custom dipoles with built in differential GPS
- ► 12 antennas (H&V) on 6 masts
- ► 4 scintillators
- Custom 500 MSa/s 4-channel DAQ with onboard phasing and coincidence triggering
- ► Power draw ~25 W

BEAMFORMING IN SITU

- Form beams that cover your full solid angle
 - Full scale BEACON would fill the solid angle near horizon, and only point in a ring near the horizon
- Noise-riding threshold automatically adjusts the thresholds in "noisy beams" so the backgrounds do not dominate

Thresholds: Many beams at thresholds **approaching** level assumed in neutrino sims

D. Southall, V. Decoene, A. Zeolla, BEACON arXiv:2206.09660

COSMIC RAYS HELP VALIDATE THE PERFORMANCE

A. Zeolla ICRC 2023, 2021, ARENA 2022

TEMPORALSPATIAL CUTS FOR CR SEARCH

A. Zeolla ICRC 2023

CONCLUSIONS

- ➤ Thresholds
 - > Trigger Threshold reduction is key to making an efficient detector
 - Lower energy threshold also preferable!
 - > Prototype achieving >6 σ thresholds with 4 antennas
 - Can we improve RF-only trigger based on scintillator inputs and/or machine learning?

> Array Configurations

- > Building 1000 independent stations is a large fraction of the Earth!
- ► Higher energy models prefer high elevations with ~ 10 antennas
- Lower energy models suggest that we should phase more antennas at any.
 (i.e. could be lower) elevation

Event Reconstruction

- ► More work is needed here!!
- ► Key design goal is: better than 1° precision in zenith
- Combinations of UHF & VHF may help with event reconstruction (direction, Xmax, energy)

Bonus Slides

CHOICE OF FREQUENCY BANDS

30-80 MHz VHF Design	200-1200 MHz UHF Design	
 Commonly available active electrically short antennas 	 Readily available, high-gain antennas 	
 e.g. 1.8 dBi Dipole Antennas Advantage Broader beam at low 	► e.g. ~10 dBi q LPDAS	uad-ridged horns,
frequencies \rightarrow wider solid angle in	ANITA PRD 2009	Advantage
acceptance		Easier to find higher gain antennas at UHF frequencies, smaller resonant antennas
noise, $V_{\rm rms} \sim 10 \ \mu V$	Noise	 Dominated by thermal noise
<u>Combination of VHF & UHF:</u> One or the other may be better for trigger;		► $V_{\rm rms} \sim 14 \mu V$
Both advantageous for event reconstruction		25

