

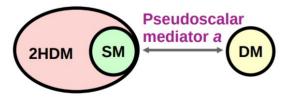
Search for new scalars \rightarrow tt in Atlas

(inspired from slides by Katharina Behr, CERN seminar)

Samuel Calvet

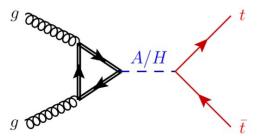
April 9th 2024

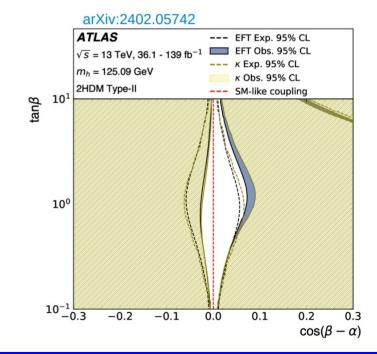
ATLAS-CONF-2024-001 https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2024-001/



Motivations

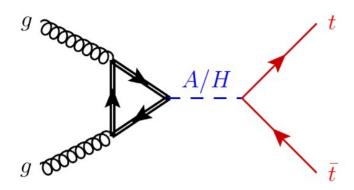
- Many BSM theories involve extended Higgs sectors
 - Supersymmetry, WIMP DM models, axion DM models
- Simplest extensions consistent with existing constraints: 2HDM
 - After EWSB:
 - 2 neutral scalars : h (likely the discovered Higgs), H
 - 1 pseudo-scalar: A
 - 2 charged : H[±]
 - ... Or with an additional mediator: 2HDM+a

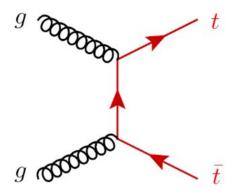

Decay into $t\bar{t}$

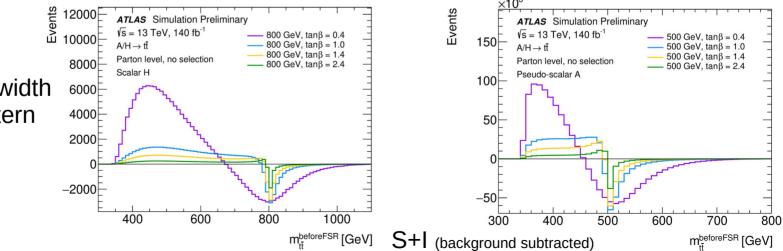

Assume type 2 couplings

Model	Up quarks	Down quarks	Leptons	
Type I	Φ_2	Φ_2	Φ_2	
Type II	Φ_2	Φ_1	Φ_1	
Lepton-specific	$arPsi_2$	$arPhi_2$	Φ_1	
Flipped	Φ_2	Φ_1	Φ_2	

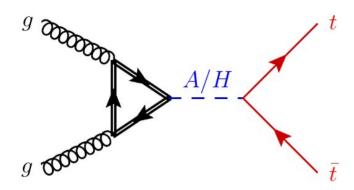
Φ_1 , Φ_2 : Higgs fields before EWSB

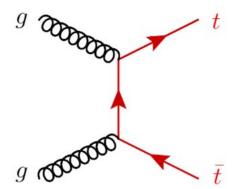

- And alignment: $\cos (\beta \alpha) = 0$
 - tanβ=v2/v1
 - α : mixing angle btw/ Higgs doublet
- A/H \rightarrow tt, dominant BR (for m>350GeV)



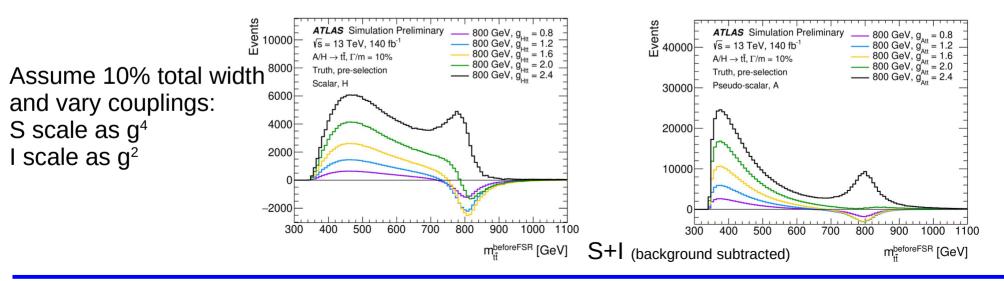

Strong interference

Strong interference due to on-shell top quark in the loop

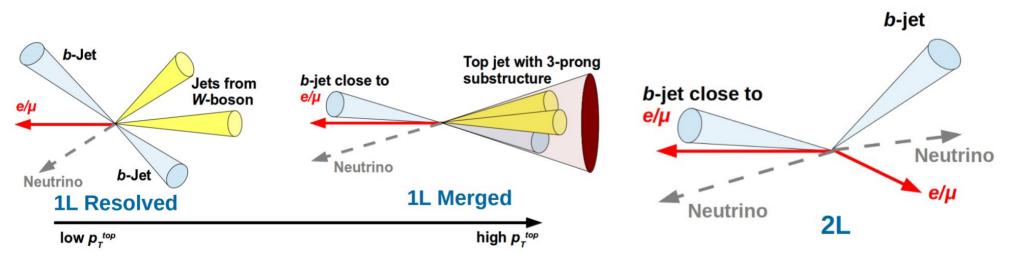

Depend on the models, and their parameters



Larger $tan\beta$ \rightarrow smaller total width \rightarrow narrower pattern


Strong interference

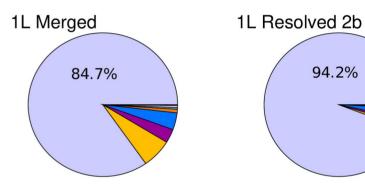
Strong interference due to on-shell top quark in the loop



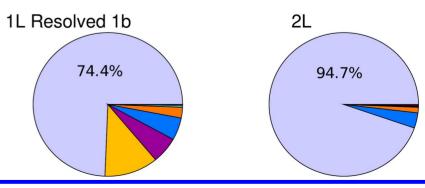
Depend on the models, and their parameters

Search strategy

- Select tt events
 - 1 ou 2 lepton (e or mu) decays
 - Resolved or merged topologies
 - Allow leptons to be close to jets
 - Large-R jet with substructure
 - Look at mass spectra. SR's split using angular variables, (pseudo-)scalar!


Selections (1L)

Selection Criteria				
Common Selection		Re-clustered anti-kt Variable-R jet		
Run and event cleaning Single lepton trigger Exactly one lepton $E_{\rm T}^{\rm miss}$ $E_{\rm T}^{\rm miss} + W$ transverse mass <i>b</i> -tagging	$ \begin{array}{l} \mbox{All detector components with acceptable conditions} \\ \mbox{Separate single-electron or single-muon triggers} \\ == 1 \ e \ {\rm or} \ \mu \ {\rm with} \ p_{\rm T} > 28 \ {\rm GeV}. \\ E_{\rm T}^{\rm miss} > 20 \ {\rm GeV} \\ E_{\rm T}^{\rm miss} + m_T^W > 60 \ {\rm GeV} \\ \geq 1 \ b\mbox{-tagged jet} \end{array} $	Dynamic radius: R(pT)=600 GeV/pT		
	Merged Selection	0.14 <i>ATLAS</i> Preliminary 0.12 $\sqrt{s}=13$ TeV Simulation		
Large- VR jet Top tagging (hadronic decay) Candidate <i>b</i> -jet (leptonic decay) Back-to-back $t\bar{t}$ topology Matching of <i>b</i> -jets and top candidates	Resolved Selection	$ \begin{array}{c} \uparrow \\ \downarrow \downarrow \downarrow \\ \downarrow \downarrow \downarrow \\ \downarrow \downarrow \downarrow \\ \downarrow \downarrow \downarrow \downarrow \\ \downarrow \downarrow \downarrow \downarrow \\ \downarrow \downarrow \downarrow \downarrow \downarrow \\ \downarrow \downarrow$		
At least four jets Well-reconstructed $t\bar{t}$ system Matching of <i>b</i> -jets and top candidates Veto events passing the merged selection	$ \begin{vmatrix} \geq 4 \text{ jets, } p_{\mathrm{T}} > 25 \text{ GeV} \\ \log_{10}(\chi^2) < 0.9 \\ \geq 1 \text{ top candidate reconstructed using} == 1b\text{-tagged jet} \end{vmatrix} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Reconstruction based on minimization of: $\chi^{2} = \left[\frac{m_{jj} - m_{W_{h}}}{\sigma_{W_{h}}}\right]^{2} + \left[\frac{m_{jjb} - m_{jj} - m_{t_{h}-W_{h}}}{\sigma_{t_{h}-W_{h}}}\right]^{2} + \left[\frac{m_{b\ell\nu} - m_{t_{\ell}}}{\sigma_{t_{\ell}}}\right]^{2} + \left[\frac{m_{b\ell\nu} - m_{t_{\ell}}}{\sigma_{t_{\ell}}}\right]^{2}$				


Selections (1L&2L)

Selection	Criteria		
Common Selection			
Run and event cleaning Single lepton trigger Exactly two leptons At least two jets <i>b</i> -tagging	All detector components with acceptable conditions Separate single-electron or single-muon triggers 2 (ee, $\mu\mu$, $e\mu$) with $p_{\rm T} > 25$ GeV. Leading one with $p_{\rm T} > 28$ GeV. ≥ 2 jets ≥ 1 b-tagged jet		
	Signal Selection		
Opposite-sign leptons $E_{\rm T}^{\rm miss}$ Dilepton invariant mass Dilepton invariant mass Lepton-plus- <i>b</i> -jet invariant mass	$ \begin{array}{l} e^+e^-, \ \mu^+\mu^-, \ e^+\mu^-, \ e^-\mu^+ \\ E_{\rm T}^{\rm miss} > 45 \ {\rm GeV} \ (ee \ {\rm and} \ \mu\mu \ {\rm channels \ only}) \\ m_{ll} > 15 \ {\rm GeV} \\ m_{ll} < 81 \ {\rm GeV \ or} > 101 \ {\rm GeV} \ (ee \ {\rm and} \ \mu\mu \ {\rm channels \ only}) \\ m_{lb} < 150 \ {\rm GeV} \end{array} $		

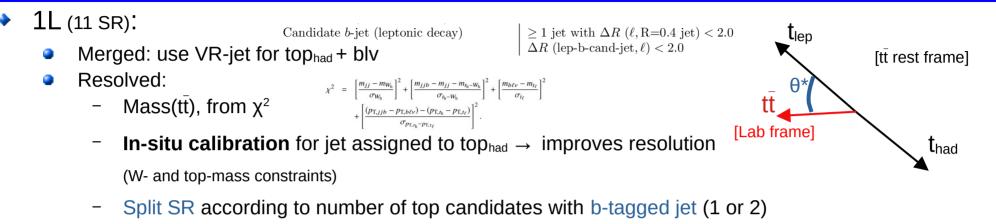
ATLAS Preliminary √s=13 TeV, 140 fb⁻¹ $A/H \rightarrow t\bar{t}$

2L: Quite pure! (but small BR)

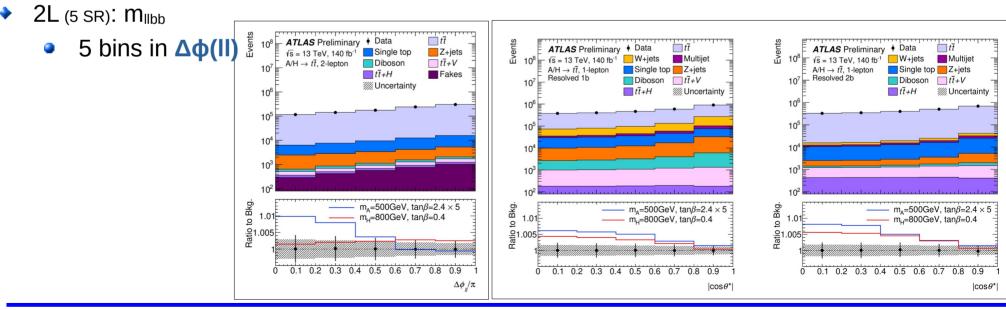
tt

Multijet

Z+jets $\overline{t}\overline{t}$ +V


Fakes

W+jets


Single top Diboson *tt+H*

94.2%

Signal Regions & discriminating variables

5 bins in cos0*

Signal & Background modelings

Process	ME generator	ME order	PDF set	PS and hadronisation	UE tune
Signal	$MadGraph5_aMC@NLO2.6.7$	LO	NNPDF3.0nlo	Pythia [8.244]	A14
$t ar{t}$	Powheg Box v2	NLO, rew. to NNLO $+$ NLO EW	NNPDF3.0nlo	Pythia 8.230	A14
Single top	Powheg Box v2	NLO	NNPDF3.0nlo	$\operatorname{Pythia} 8.230/8.235$	A14
Diboson	$\operatorname{Sherpa} 2.2.1/2.2.2$	MEPS@NLO	NNPDF3.0nnlo	\mathbf{S} HERPA	internal
W+jets	$\operatorname{Sherpa} 2.2.11$	MEPS@NLO	NNPDF3.0nnlo	Sherpa	internal
Z+jets	$\operatorname{Sherpa} 2.2.1$	MEPS@NLO	NNPDF3.0nnlo	Sherpa	internal
$t\bar{t} + V$	$MadGraph5_aMC@NLO 2.3.3$	NLO	NNPDF3.0nlo	Pythia 8.210	A14

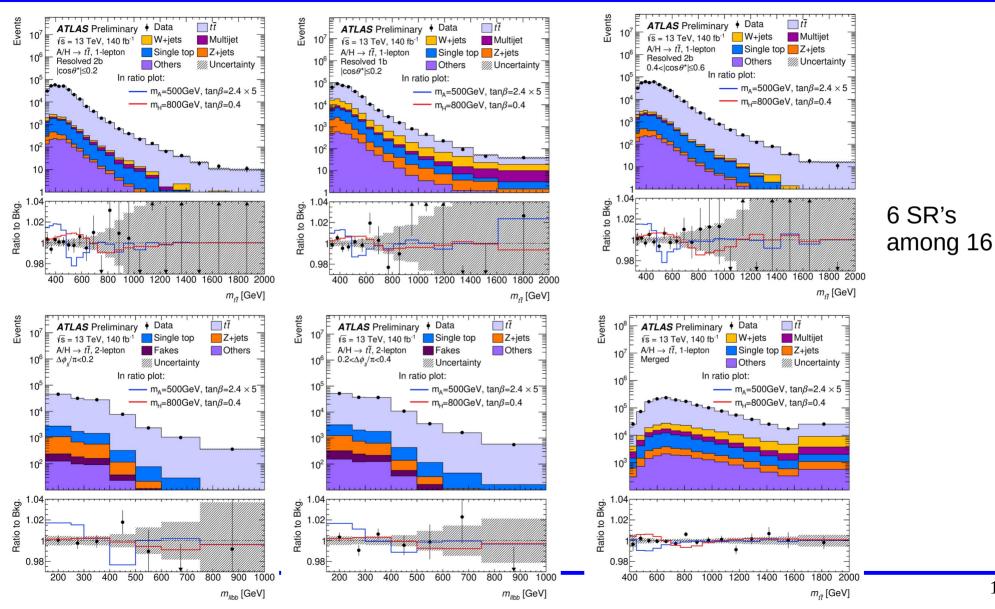
- Signal:
 - ggHFullLoop model
 - Width from 2HDMC v1.8.0
 - MadSpin
 - Generate S, Reweighting → S, S+I modified MG code!
 - k_s : LO \rightarrow NNLO k-factor (SUSHI)

$$k_I = \sqrt{k_S \cdot k_B^{\rm LO}}$$

Signal & Background modelings

Process	ME generator	ME order	PDF set	PS and hadronisation	UE tune
Signal	MADGRAPH5_AMC@NLO 2.6.7	LO	NNPDF3.0nlo	Pythia [8.244]	A14
$tar{t}^-$	POWHEG BOX $v2$	NLO, rew. to NNLO $+$ NLO EV	V NNPDF3.0nlo	Pythia 8.230	A14
Single top	POWHEG BOX $v2$	NLO	NNPDF3.0nlo	Pythia $8.230/8.235$	A14
Diboson	Sherpa $2.2.1/2.2.2$	MEPS@NLO	NNPDF3.0nnlo	SHERPA	internal
W+jets	$\operatorname{Sherpa} 2.2.11$	MEPS@NLO	NNPDF3.0nnlo	Sherpa	internal
Z+jets	$\operatorname{Sherpa} 2.2.1$	MEPS@NLO	NNPDF3.0nnlo	Sherpa	internal
$t\bar{t} + V$	${ m MadGraph5_AMC@NLO2.3.3}$	NLO	NNPDF3.0nlo	Pythia 8.210	A14
٩	al: ggHFullLoop model - Width from 2HDMC v1.8.0 - MadSpin Generate S, Reweighting → S modified MG code! k _s : LO → NNLO k-factor (SUSF	iterative re W+jets (1L): Normalisa (asymmetric) S, S+I	eweighting in m _{tī} , pT	Charge Asymmetry	NLO-EW
	$k_I = \sqrt{k_S \cdot k_B^{\rm LO}}$,		veighting derived in Z	-peak CR

- 1L: from data (matrix method)
- 2L: from MC (mostly tt, W+jets)

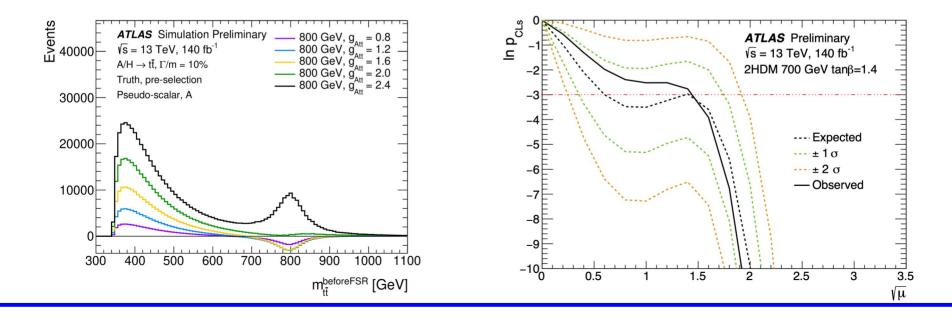

Systematic uncertainties

- Complex fit:
 - Many systematics, 16 SR's, millions of events
- Correlation scheme:

	1 L	2 L
	Resolved, 10 SR	Merged 5 SR
$t\bar{t}$ modelling [1] (h_{damp} , PS, PS-ME match.)		
$t\bar{t}$ modelling [2] (I/FSR, cross-sections, $\mu_{R,F}$)		
top mass		
Other backgrounds		
Experimental uncertainties		

[1]: large 2-point systematics \rightarrow prevent constraints to propagate across SR [2]: decorrelate different kinematic regimes Top mass: correlated btw/ B and S+I

Good agreement



Statistical analysis with interference

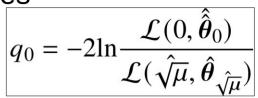
• Likelihood: $\sqrt{\mu}$ =g as parameter of interest

$$\mu S + \sqrt{\mu} I + B = (\mu - \sqrt{\mu}) S + \sqrt{\mu} (S + I) + B$$

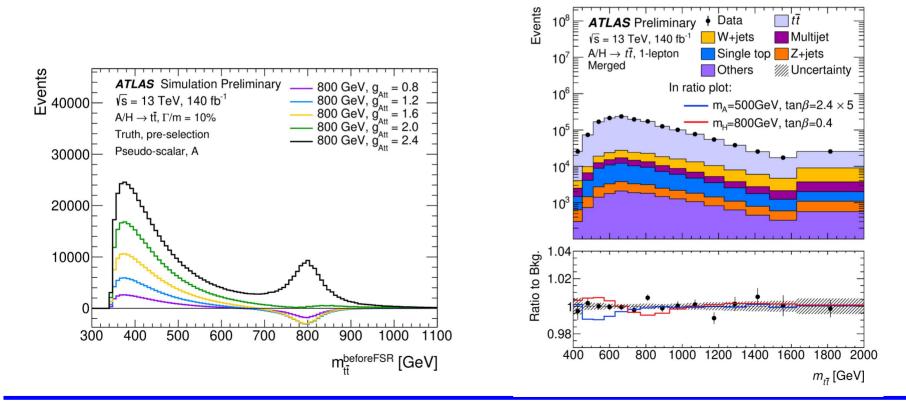
- Local minima can appear in CLS scan
 - Upper limits not well defined!
 - Requires going beyond common statistical approaches

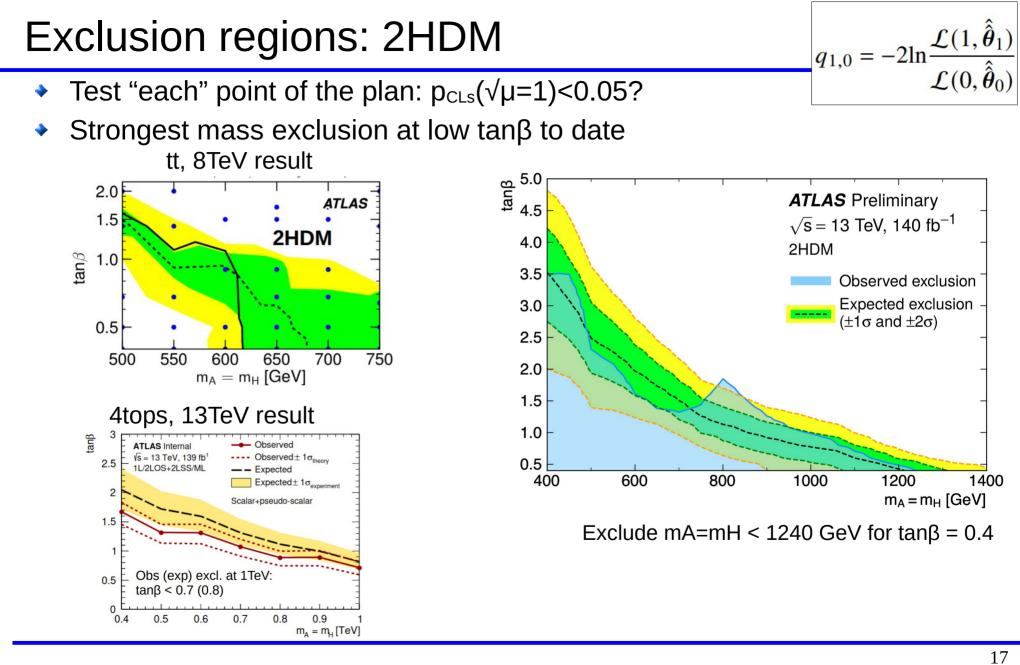
Choice of test statistic

- Search stage
 - Should we reject SM in favour of (any) BSM hypothesis?

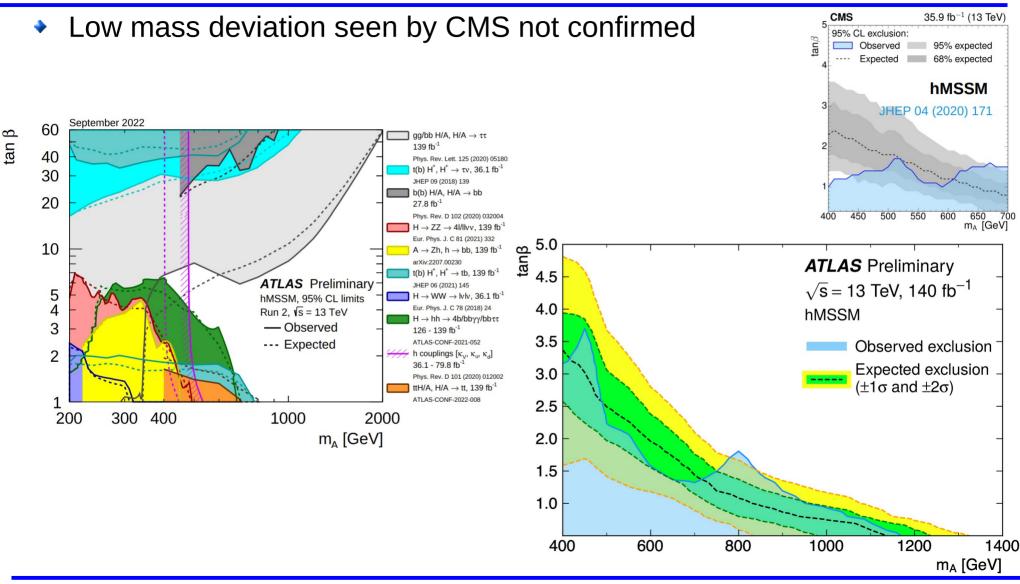

$$q_0 = -2\ln \frac{\mathcal{L}(0, \hat{\hat{\theta}}_0)}{\mathcal{L}(\hat{\sqrt{\mu}}, \hat{\theta}_{\hat{\sqrt{\mu}}})}$$

- Exclusion stage:
 - Should we reject the BSM hypothesis under consideration?

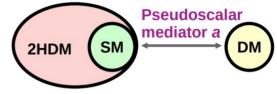

$$q_{1,0} = -2\ln\frac{\mathcal{L}(1,\hat{\hat{\theta}}_1)}{\mathcal{L}(0,\hat{\hat{\theta}}_0)}$$

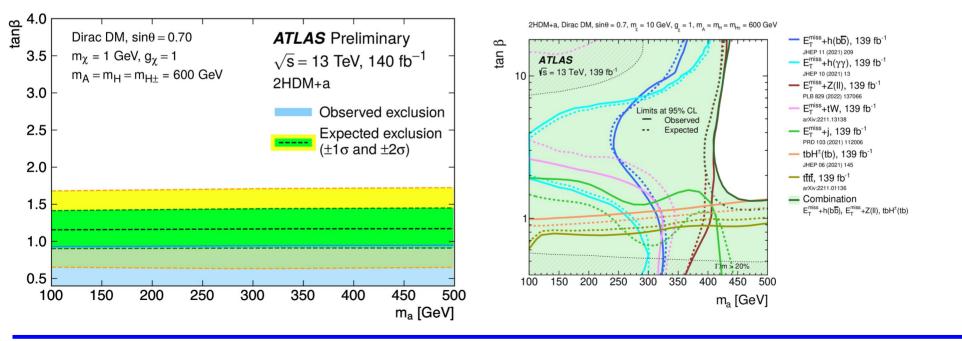

Search stage

- Tested agreement between data and S+I+B hypotheses
 - For masses [400,1400] GeV and widths [1, 40]%
 - Most significant deviation from SM-only (2.3 σ local): mA = 800 GeV, $\Gamma_A/m_A = 10\%$ and $\sqrt{\mu} = 4.0$ (\rightarrow peak)

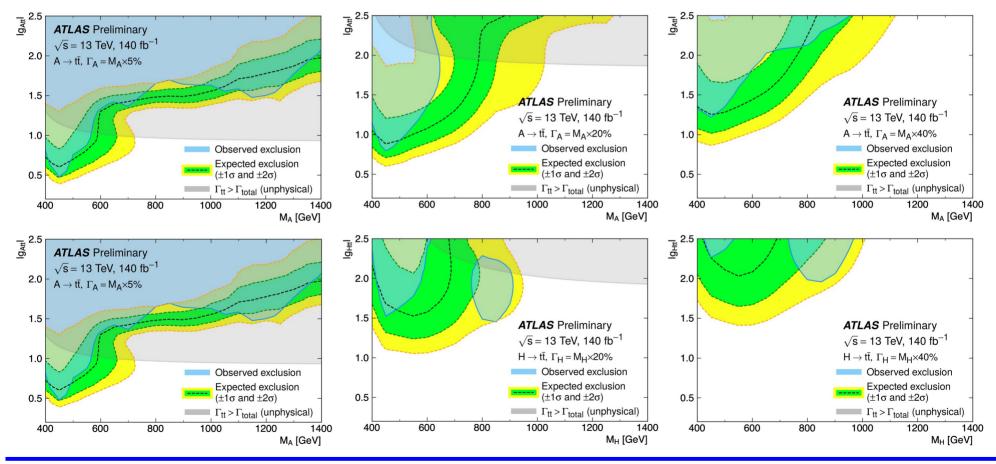


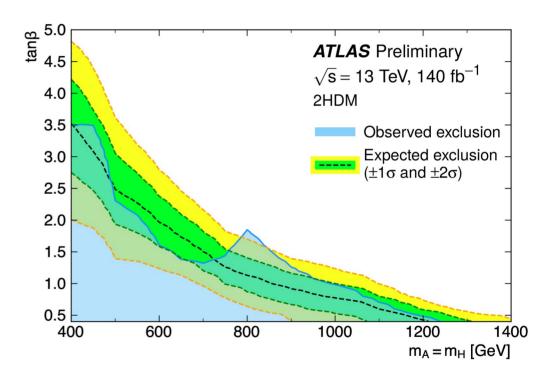
Driven by narrow upward fluctuation around 800 GeV in merged region




Exclusion regions: hMSSM

Exclusion regions: 2HDM+a


- Benchmark scenario 3a in LHC DM WG recommendations
- Observed exclusion slightly weaker than H+ → tb result due to downward fluctuation
 - Similar conclusion for $sin(\theta)=0.35$


Model-agnostic

- Constrain single (pseudo-)scalar production
- Upper limits on coupling modifier g_{Att} or g_{Htt} as function of mass for fixed total width
 - Different from 2HDM where width depends on mass and coupling (tanβ)

Conclusions

- Interference pattern:
 - Fun !
 - Difficult (modeling, limit setting)
 - Refreshing (limit setting)
- Strongest limits for low tanβ for 2HDM/hMSSM
- No sign of new physics
 - In agreement with search for tt(H/A) → 4 tops

ATLAS-CONF-2024-001

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2024-001/