

CP-sensitive simplified template cross sections for $t\bar{t}H$

Henning Bahl, <u>Alberto Carnelli</u>, Frederic Deliot, Elina Fuchs, Anastasia Kotsokechagia, Marco Menen, Matthias Saimpert, Laurent Olivier Schoeffel

10/04/2024, Top LHC France 2024 - LPNHE Paris

This project has received funding from the European Union's Horizon 2020 research and innovation program under grantagreement No. 800945 NUMERICS—H2020-MSCA-COFUND-2017.

This work was supported by ANRPIA funding ANR-20-IDEES-0002.

1 Introduction

2 Observable definition & phenomenological model

3 Results

*The work presented here will be published soon

Introduction

- Yukawa interactions account for fermion masses, SM expectation: coupling proportional to mass, order of unity for the top quark
- Only $\ensuremath{t\bar{t}H}$ can directly probe the top-Higgs coupling at tree level
- Sensitive to effects beyond the SM e.g. CP violation
- SM CP violation insufficient to explain baryon asymmetry of the Universe

The CP structure of the top-Higgs coupling can be parametrized as a **complex phase** in SM Lagrangian:

 $\mathcal{L}_{\text{top-Yuk}} = \frac{y_t^{\text{SM}} g_t}{\sqrt{2}} \bar{t} \left(\cos \alpha_t + i \gamma_5 \sin \alpha_t \right) t H$

Where α mixing angle (effect on shape), g_t scaling factor (effect on normalization), <u>link</u>

• Established framework currently used: Simplified template cross-section framework (STXS - link)

- simplify combination between channels/measurements
- minimize the dependence on theory uncertainties
- maximize the experimental sensitivity
- isolate possible BSM effects
- limit the number of bins to match the experimental sensitivity

We present a **possible extension** that enhances the CP sensitivity of STXS

- Indirect constrains from other measurement \rightarrow depends on model/methodologies (e.g., electric dipole moment)
- **Multivariate techniques**, like boosted decision trees (BDT) \rightarrow relies on algorithm and assumptions
- Use of CP observables:
 - CP-odd observables \rightarrow hard to construct, information not currently easy to get (e.g., top polarization)
 - CP-even observables \rightarrow global fits

Top fig. ATLAS tt $H(H \rightarrow b \overline{b}) \ (\underline{link)}$ performed using CP-even observables

Bottom fig. CMS t\bar{t}H (link), partial combination, BDT trained to separate CP-even/odd

CP-odd excluded by various studies at 4σ , the mixing angle is currently expected to be $|\alpha| < 45^\circ \rightarrow$ New target to probe around 35°

Phenomenological model & observables definition

- Generating ttl events in the "Higgs Characterization" (HC) model (link), with MadGraph5_aMC@NLO, $m_b = 0$ in the 5 flavor scheme
- LO plus scale factor to take into account for NLO effects

- The pure CP-odd scenario is excluded by previous studies \rightarrow need new benchmarks
- Probing the 35°, 45° scenarios (90° for reference)
- Studied a group of possible discriminating observables

- Set of observables considered for the studies based on phenomenology and previous analysis works.
- These assume H, t and \bar{t} reconstructed, with no need to distinguish t/ \bar{t}

Rest-frames considered:

- laboratory frame (lab frame),
- tt rest frame, where $\mathbf{p}_t + \mathbf{p}_{\bar{t}} = \mathbf{0}$ (tt frame),
- t \bar{t} H rest frame, where $\mathbf{p}_t + \mathbf{p}_{\bar{t}} + \mathbf{p}_H = \mathbf{0}$ (t \bar{t} H frame),
- H rest frame, where $\mathbf{p}_{H} = \mathbf{0}$ (H frame).

observable	definition	frame	reference	
p_T^H	-	lab, tī, tīH	-	
$\Delta \eta_{t\bar{t}}$	$ \eta_t - \eta_{\overline{t}} $	lab, H , t $\overline{t}H$	-	
$\Delta \phi_{t\bar{t}}$	$ \phi_t - \phi_{\overline{t}} $	lab, H , tŦH	-	
$m_{t\bar{t}}$	$(p_t + p_{\bar{t}})^2$	frame-invariant	-	
$m_{t\bar{t}H}$	$(p_t + p_{\bar{t}} + p_H)^2$	frame-invariant	-	
$\cos\left(\theta^{*}\right)$	$\frac{\mathbf{p}_t \cdot \mathbf{n}}{ \mathbf{p}_t \cdot \mathbf{n} }$	tī	link	
b_1	$\frac{(\mathbf{p}_t \times \mathbf{n}) \cdot (\mathbf{p}_t \times \mathbf{n})}{p_T^t p_T^{\bar{t}}}$	all	<u>link</u>	
b_2	$\frac{(\mathbf{p}_t \times \mathbf{n}) \cdot (\mathbf{p}_{\overline{t}} \times \mathbf{n})}{ \mathbf{p}_t \mathbf{p}_{\overline{t}} }$	all	link	
b_3	$\frac{p_t^x \ p_{\bar{t}}^x}{p_t^t \ p_T^t \ p_T^t}$	all	<u>link</u>	
b_4	$\frac{p_{\bar{t}}^{z} p_{\bar{t}}^{z}}{ \mathbf{p}_{t} \mathbf{p}_{\bar{t}} }$	all	<u>link</u>	
ϕ_C	$\arccos\left(\frac{ (\mathbf{p}_{p_1} \times \mathbf{p}_{p_2}) \cdot (\mathbf{p}_t \times \mathbf{p}_{\bar{t}}) }{ \mathbf{p}_{p_1} \times \mathbf{p}_{p_2} \mathbf{p}_t \times \mathbf{p}_{\bar{t}} }\right)$	Н	link	

Distributions at the parton-level

Lab frame

Lab frame

- · Some example of the observables distributions at parton level
- Normalized distributions at parton level
- All observables were studied, showing here b_4, b_2

Cez

ALL COLOR

Distributions at the parton-level

Lab frame

tt frame

- Two other observables distributions at parton level
- Normalized distributions at parton level
- Further examples: $\cos\left(\theta^{*}\right), p_{T}^{H}$

Detector effects and selection efficiency

- Developed a simplified model that simulate the $\ensuremath{t\bar{t}H}$ channels studied at LHC
- Channels: $t\bar{t}H(H \rightarrow \gamma\gamma)$ and $t\bar{t}H(H \rightarrow b\bar{b})$ and $t\bar{t}H \rightarrow multilepton final states$
- Took into account: effect from BR, acceptance for efficiency factors, smeared the Higgs and top/Antitop for resolution.
- Numbers are channel-specific (backup) and validated from ATLAS/CMS results

• Example: smearing effect on $p_T^H \rightarrow$ estimated for $t\bar{t}H(H \rightarrow \gamma\gamma)$ two orders of magnitude lower than the other two channels thanks to clear signature from photons

- Quantify and compare the sensitivity of the various observables assuming acceptance, smearing and other factors applied, luminosity of 300 fb $^{-1}$
- To account for statistical & systematic uncertainty, in each bin σ_i is:

$$\sigma_i = \sqrt{\sigma_{\rm sys}^2 + \sigma_{\rm stat}^2}$$

- Define significance S according to $\underline{\sf link}$: metric to evaluate and compare observables, taking n SM and m BSM

$$S = \sqrt{\sum_{i=1}^{N_{\text{bins}}} S_i} = \sqrt{2\sum_{i=1}^{N_{\text{bins}}} \left(n_i ln \left[\frac{m'_i(n_i + \sigma_i^2)}{n_i^2 + m_i \sigma_i^2} \right] - \frac{n_i^2}{\sigma_i^2} ln \left[1 + \frac{\sigma_i^2(m'_i - n_i)}{n_i(n_i + \sigma_i^2)} \right] \right)}$$

- Due to systematic uncertainties, apart for the t̄tH(H $\to \gamma\gamma$) channel, distributions are normalized before S evaluation

Results

- In total, we considered 31 different observables across the different rest frames and focusing on the best observable
- Considering also two-dimensional distributions taking combinations of 2 observables shows the best discrimination, results on a subset of observables:

- Best results from combining p_T^H with $\Delta \phi_{t\bar{t}}^{\text{lab}}$, b_1^{lab} , $\Delta \eta_{t\bar{t}}^{t\bar{t}}$, $\theta^{*,t\bar{t}}$, $b_2^{t\bar{t}}$.
- For these pairs: binning optimization performed targeting six bins to determine best pair, distributions presented below (comparing SM scenario with $\alpha = 35^{\circ}$)

 $\Delta \phi_{t\bar{t}}^{\text{lab}}$: [0, $\pi/4$, $\pi/2$, $2\pi/3$, $5\pi/6$, $11\pi/12$, π]

 $\Delta \eta_{t \bar{t}}^{t \bar{t}}$: [0, 0.5, 1, 1.5, 2, 3, 5]

<u>cea</u>

Optimized binning for other observables

• Optimized binning is chosen to maximize the significance for various channels

Cez

Final significance estimation

- The combination using the optimized binning allows us to choose the best observables combination in the various channels
- For these final observables \rightarrow qualitative background study carried out to verify that the background distribution are not reducing the sensitivity
- In addition to p_T^H two candidates are observed to be equally good for extending the STXS framework, $b_2^{t\bar{t}}$, $\theta^{*,t\bar{t}}$

- Expected exclusion limit with our simplified model taking p_t^H only (left) and together with the best observable (right) at 300 ${\rm fb}^{-1}$
- The final combinations make a large improvement in the CP sensitivity
- + p_t^H in combination with $b_2^{t\bar{t}}$

Cez

Expected sensitivity to CP, STXS extension $\theta^{*,t\bar{t}}$

- Expected exclusion limit with our simplified model taking p_t^H only (left) and together with the best observable (right) at 300 fb⁻¹
- The final combinations make a large improvement in the CP sensitivity
- p_t^H in combination with $\theta^{*,t\bar{t}}$

<u>cea</u>

Recap:

- We presented a study of the CP measurement in $t\bar{t}H$, using three different channels, offering a solid alternative to multivariate studies
- Performing a detailed sensitivity study for various CP-sensitive observables, we conclude that both $b_2^{t\bar{t}}$ and $\theta^{*,t\bar{t}}$ are equally good candidates, in combination with p_T^H
- The final proposal is a **feasible extension of the current STXS framework, facilitating combination between channels, experiments and future reinterpretations**

Prospect:

- Published soon
- Application to next CP measurements already under consideration

CP violation in the Higgs sector is still to be thoroughly explored!

Thanks for your attention!

ttH channel summary

Standard Model Production Cross Section Measurements

Status: October 2023

- tTH observation by ATLAS (link) and CMS (link) with partial Run 2 datasets with a significance of 6.3 and 5.2 σ respect to background-only hypotesis
- ttH still currently under combination with run 2 datasets.

-ez

Latest CP measurements in $t\bar{t}H$

ATLAS analysis (link):

- 1 train BDT to separate ttH from background (BKG Discriminant)
- 2 BDT trained to separate CP-even from CPodd couplings (CP Discriminant)

CP-odd excluded with 3.9 σ , $|\alpha| > 43$ at 95% CL

CMS analysis (link):

- Same strategy using MVAs to separate BKGs and CP-odd from CP-even
- Use of the parametrization: $f_{CP}^{t\bar{t}H} = \frac{|\tilde{\kappa}_t|^2}{|\kappa_t|^2 + |\tilde{\kappa}_t|^2} \operatorname{sign}(\tilde{\kappa}_t/\kappa_t).$
- Observed $f_{CP}^{t\bar{t}H}=0.00\pm0.33$ at 95% and pure CP-odd coupling excluded at 3.2σ .

- Similar methodology in multi-lepton (CP-odd excluded at $> 2\sigma$) and H \rightarrow VV \rightarrow 4 ℓ channels (CP-odd excluded at 3.1σ) (link and link)
- Observed combined result of $|f_{CP}^{t\bar{t}H}|<0.55$ at 68% and pure CP-odd scenario excluded at $3.7\sigma.$

Simplified model factors

- Various factor utilized to scale the distributions for the three channels
- They were taken from available info from published papers in the three channels

Acceptance factors										
	$t\bar{t}H(parton)$	$t\bar{t}H(\rightarrow \gamma \gamma$	γ) $t\bar{t}H$ (multilep.)	$t\bar{t}H(\rightarrow b\bar{b})$			Si	mearing factors	i	
$\alpha = 0^{\circ}$	1	$2.5 \cdot 10^{-1}$	$1 3.6 \cdot 10^{-2}$	$5.0 \cdot 10^{-3}$		ti	EH(parton)	$t\bar{t}H(\rightarrow \gamma\gamma)$	$t\bar{t}H($ multilep. $)$	$t\bar{t}H(\rightarrow b\bar{b})$
a = 0	1	2.5 10-	1 3.6.10 ⁻²	5.2.10-3		$\Delta p_{T,H}$	None	4 GeV	120 GeV	80 GeV
α = 00	1	2.0 10	1 2.8 10-2	5.4 10-3		$\Delta p_{T,t}$	None	40 GeV	70 GeV	70 GeV
$\alpha = 40$	1	2.7 · 10	1 4.9 10-2	6.5 10-3		$\Delta \eta_t$	None	0.5	0.8	0.8
$\alpha = 90^{\circ}$	1	$3.2 \cdot 10$	4.2 · 10 -	0.3 · 10 ~		$\Delta \phi_t$	None	None	20°	20°
		Normalization factors + Branching Ratio								
			$t\bar{t}H(parton)$	$t\bar{t}H(\rightarrow$	$\gamma\gamma)$	$t\bar{t}H$ (multilep.) $t\bar{t}H(\rightarrow b\bar{b})$			
		BR	1	$2.27 \cdot 10^{-10}$)-3	$6.79\cdot 10^{-2}$	$5.81\cdot 10^{-1}$			
		$\alpha = 0^{\circ}$	Normalized	93		401	473			
		$\alpha=35^\circ$	Normalized	77		328	397			
		$\alpha = 45^\circ$	Normalized	69		290	358			
		$\alpha=90^\circ$	Normalized	45		180	244			

Qualitative background study

• Sensitivity of the observables in the various bins compared to the background distributions for the most sensitive observables

Cez

background distribution study, other observables

• Sensitivity of the observables in the various bins compared to the background distributions for other optimized observables

Cez