

ttH in the multilepton channel

Vera Maiboroda CEA Saclay / Université Paris-Saclay

On behalf of Saclay ATLAS team

Top Yukawa-coupling via *t*tH

- Top Yukawa coupling (y_t) is expected to be **of** order one
 - \rightarrow idea about the scale of New Physics
- *ttH*/*tH* production cross-section measurement is the only **direct** way to measure y_{t}
- *t*t*H* allows to probe the **CP** structure of the top-Higgs coupling (talk by Alberto Carnelli)

σ [pb] 10^{11}

ttH channels

- Production of *t*tH accounts for about 1% of the total rate
- Covering as many decay channels as possible:

• *ttH* in multilepton final state: clean final state with leptons, moderate irreducible background

Figure from Tamara Vazquez Schroeder

- $t\bar{t}H$ observation by <u>ATLAS</u> and <u>CMS</u> in 2018 with partial Run 2 dataset
- $t\bar{t}H$ in multilepton by <u>ATLAS</u> (80 fb⁻¹) and <u>CMS</u> (137 fb⁻¹) ATLAS measured $\mu(t\bar{t}H) \approx 0.58$ with an observed significance of 1.8 σ

Analysis setup and strategy

- Full run 2 dataset (140 fb⁻¹)
- *ttH* ML inclusive cross-section measurement including 6 different channels
- Simplified template cross-section (STXS) measurement
- Higgs CP interpretation

3l final state

Regions definition

42 -12--28 31. Signal regions (SR) ttH++ tťH tŤH MVA-based control regions (CR) ttH--"Other" CRs from the template fit approaches used to model fake >0τ lepton backgrounds =0τ tH MM(e) MT(e) TM(e) MM(µ) MT(µ) TM(µ tīH 🕂 SR $=1\tau$ SS(ei MVA-based CR Other CR - Channel Preselection tťH tH tīH+-Dedicated CR selection $=2\tau$ 4 ÷ IntC ExtC

Regions: 2ℓSS + 0τ

Top LHC France 2024

Regions: 2ℓSS + 0τ

- Signal and MVA-based control regions definition
 - Pre-MVA selection:

	2ℓ SS $+0 au_{had}$
au candidates	==0 M
Leptons counting	$==2$ T: $p_T > 15$ GeV
Lepton details	SS
njets	\geq 3
nbjets (at 85% WP)	≥ 1

- MVA selection:
 - Multi-class BDT: *ttH*, *tH*, *ttW* and *Other* as output nodes
 - 20 variables to train: NJets, m_{II}, dR (l, jet), etc.
 - Regions are defined based on the highest BDT score
- Dominant prompt backgrounds: *ttW*, *ttZ*

Regions: 3ℓ + 0τ

Regions: 3ℓ + 0τ

- Signal and MVA-based control regions definition
 - Pre-MVA selection:

	$_{3\ell+0 au_{had}}$
au candidates	==0 M
Leptons counting	$==3 (T,T,L): p_T > 15, 15, 10 \text{ GeV}$
Lepton details	OS (to others): L $p_T > 10$ GeV
	SS pair: T $p_T > 15$ GeV
	OS pair: $ m(II) - m_Z > 10$ GeV
	and $m(II) > 12$ GeV
njets	≥ 2
nbjets (at 85% WP)	≥ 1

- MVA selection:
 - Multi-class BDT: *ttH*, *tH*, *ttW*, *ttZ*, *VV* and *tt* as output nodes
 - 25 variables to train: NJets, m_{II}, dR (l, jet), etc.
 - Regions are defined by optimized cuts on BDT scores
- Dominant prompt backgrounds: $t\overline{t}W$, $t\overline{t}Z$

Mismodelled main background: *t*tW

• *ttW* is the main background for *ttH* multilepton

CMS:

- Observed ttw mismodelling is 20-50% larger cross section than predicted
 - Theory: <u>NLO + NNL</u>: 606 fb ± 7% <u>NLO + FxFx</u>: 722 fb ± 10%
 Experiment: <u>ATLAS</u>: 880 fb ± 6% (stat) ±
 - 880 fb ± 6% (stat) ± 8% (syst) 868 fb ± 5% (stat) ± 6% (syst)

tt̄γ*(low)

Mat Conv

Non-prompt u Other

Uncertainty ···· Pre-Fit

ttH (µ=0.58)

 $t\bar{t}(Z/\gamma^*)(high)$

Non-prompt e

Diboson

ATLAS Preliminary + Data

vs = 13 TeV. 79.9 fb⁻¹ ttW

Events / bin

200

150

100

250 38

Post-Fit

Control regions definitions: 3ℓ + 0τ

Backgrounds

Irreducible background:

- Events with prompt leptons produced in
 - *W/Z* boson decays
 - leptonic τ-lepton decays
 - internal conversions
- Source:
 - Main: $t\bar{t}W$, $t\bar{t}Z/\gamma^*$ and VV
 - Smaller: *tZ, tW, tWZ, ttWW, VVV, ttt, tt*
- Estimated from simulation

Examples:

- Jet multiplicity not well modelled in VV sample: N_{jets} -dependent data-driven corrections (derived in $t\overline{t}W$)
- Cut-based *3I VV* and *ttZ* CRs taken from *ttW* analysis

Control regions definitions: 2ℓSS + 0τ

Reducible background:

- Events with at least
 - one prompt charge-flip electron
 - one fake lepton
- Source:
 - material conversions
 - hadron decays
 - improper reconstruction of other particles
- Estimated from **simulation** mainly using template method

Backgrounds

Events

Data / Pred.

Examples:

- Fake/non-prompt lepton: estimated from simulation, with the normalisation determined by the likelihood fit.
 - 2 conversion CRs (internal and external): $Z(\rightarrow \mu\mu)\gamma$
 - 6 2ISS CRs enriched in contributions from HF fakes in $t\overline{t}$ events
 - split by flavour of subleading lepton
 - split by prompt leptons veto working points
 - 4 NFs: HF *e* and HF μ fakes, material and internal conversion

MT(e)

 $MM(\mu) MT(\mu) TM(\mu)$

142.0

3.3

0.3

11.9

7.1

5.5

23.9

0.1

3.1

2.4

64.2

15.2

90

P T,subleadinglep

100

80

Regions definition: 2ℓSS + 1τ

Regions definition: 2ℓSS + 1τ

- Similar BDT-based procedure, but used to define the SR only
- Dominant background from fakes, no *ttW* or *ttZ* CRs

True Label

Results combined: Asimov

- Expected significance is 5.7σ (3.1σ in previous analysis)
- Measure *ttH* ML with significance of 5.4σ (not all systematics are included yet)
- Main systematics: *ttH* cross-section uncertainty, *ttW* and *ttZ* NFs

Results combined: CR only with data

- Simplified template cross-section (STXS)
 - SR splitting of Higgs production processes on Higgs pT
 - Simplify combination between channels/measurements
 - Isolate possible BSM effects, minimize the dependency on theory uncertainties
- 6 bins in H_{pT} in STXS framework for $t\bar{t}H$

STXS setup

S

4

STXS bin

True

1

- 6 bins in H_{pT} in STXS framework for $t\bar{t}H$
- H_{DT} difficult to reconstruct: many neutrinos in *H* decay and not reconstructed soft particles
- Use GNN for H_{DT} reconstruction

STXS 2ℓSS + 0τ - - for the STXS fit setup

Top LHC France 2024

STXS results combined Asimov

- Sensitivity to STXS bins not strong enough to measure all 6 bins
- Significant improvement in combined fit compared to single channels

Conclusions

- Still some work on harmonization and including all systematics is to be done
- Wait for the unblinded results

Thanks for the attention

Monte Carlo samples

The configurations used for event generation of signal and background processes.

Systematics samples are in grey.

Process	Generator	ME order	Parton shower	PDF	Tune
tīH	POWHEG-BOX	NLO	Pythia 8	NNPDF3.0nlo	A14
	(POWHEG-BOX)	(NLO)	(Herwig7.0.4)	(NNPDF3.0NLO)	(H7-UE-MMHT)
	(MG5_aMC)	(NLO)	(Pythia 8)	(NNPDF3.0NLO)	(A14)
tĪW	Sherpa 2.2.10	MEPs@NLO	Sherpa	NNPDF3.0nnlo	SHERPA default
	(MG5_aMC)	(FxFx NLO)	(Pythia 8)	(NNPDF3.0NLO)	(A14)
	(Powheg)	(NLO)	(Pythia 8)	(NNPDF3.0NLO)	(A14)
	(Powheg)	(NLO)	(Herwig 7)	(NNPDF3.0NLO)	(H7-UE-MMHT)
$t\bar{t}W$ (EW)	Sherpa 2.2.10	LO	Sherpa	NNPDF3.0nnlo	SHERPA default
	(MG5_aMC)	(LO)	(Pythia 8)	(NNPDF3.0NLO)	(A14)
tīll	MG5_aMC	NLO	Pythia 8	NNPDF3.0nlo	A14
	(MG5_aMC)	(NLO)	(Herwig 7)	(NNPDF3.0NLO)	(H7-UE-MMHT)
	(MG5_aMC)	(NLO)	(Pythia 8)	(NNPDF3.0NLO)	(A14 Var3c)
$t\bar{t} \rightarrow W^+ b W^- \bar{b} \ell^+ \ell^-$	MG5_aMC	LO	Ρυτηία 8	NNPDF3.0lo	A14
tītī	MG5_aMC	NLO	Ρυτηία 8	NNPDF3.1nlo	A14
tī	POWHEG-BOX	NLO	Ρυτηία 8	NNPDF3.0nlo	A14
	(POWHEG-BOX)	NLO	(Herwig7.1.3)	(NNPDF3.0NLO)	(H7-UE-MMHT)
tīt	MG5_aMC	LO	Ρυτηία 8	NNPDF2.3LO	A14
Single top	Powheg-Box	NLO	Ρυτηία 8	NNPDF3.0nlo	A14
(t-, Wt-, s-channel)					
VV, qqVV, VVV	Sherpa 2.2.2(1)	MEPs@NLO	Sherpa	NNPDF3.0nnlo	SHERPA default
$Z \to \ell^+ \ell^-$	Sherpa 2.2.1	MEPs@NLO	Sherpa	NNPDF3.0nnlo	SHERPA default
$Z \to \ell^+ \ell^- (\gamma \to e^+ e^-)$	Powheg-BOX	NLO	Ρυτηία 8	CTEQ6L1nlo	A14
$\underline{Z \to \ell^+ \ell^- (\gamma * \to e^+ e^-)}$	Powheg-BOX	NLO	Рүтніа 8	CTEQ6L1nlo	A14

Monte Carlo samples: ttW

		$2\ell SS+0\tau_{had}$		$3\ell + 0\tau_{had}$		4ℓ
$\tau_{\rm had}$ candidates		==0 M		==0 M	Ĩ	s—n
Leptons counting		==2 T: $p_{\rm T} > 15 \text{ GeV}$		==3 (T,T,L): $p_T > 15$,	15,10	$==4$ L: $p_{\rm T} > 10$ GeV
				GeV		
Lepton details		SS		OS (to others): L $p_{\rm T} > 10$	GeV	Sum charge = 0
				SS pair: T $p_T > 15$ GeV		
				OS pair: $ m(ll) - m_Z > 1$	0 GeV	OS pairs: $m(ll) > 12$ GeV
				and $m(ll) > 12 \text{ GeV}$		$ m(llll) - m_H > 5 \text{ GeV}$
N _{jets}		≥ 3		≥ 2		≥ 2
N _{b-jets} (@ 85% WP)		≥ 1		≥ 1		≥ 1
	2ℓSS+	$1\tau_{had}$	1 <i>ℓ</i> +27	had	2ℓOS-	$+2\tau_{had}$
τ_{had} candidates	==1 N	1: $p_{\rm T} > 20 {\rm GeV}$	==2 C	$PS M p_T > 20 GeV$	==2 C	$PS M p_T > 20 \text{ GeV}$
Leptons counting	==2 N	$=2 \text{ M}: p_{\text{T}} > 15 \text{ GeV}$		$==1 L p_{T} > 27 GeV$		$S L p_T > 10 \text{ GeV}$
Lepton details	SS	-7 Al-		50/30	OS pa	ir: $ m(ll) - m_Z > 10 \text{ GeV}$
	m(ll)	$-m_Z > 10$			and m	(ll) > 12 GeV
Njets	≥ 3		≥ 3		-	
N _{b-jets}	≥ 1 (@	2 85% WP)	≥ 1 (0	@ 77% WP)	> 0 (@	2 77% WP)

	e				μ				
	L	Ľ	Μ	M _{ex}	Т	L	М	M _{ex}	Т
LooseVar_Rad isolation			24	Yes				Yes	
Non-prompt lepton BDT	No	No		Tight-not-	VeryTight	No	Tight $\frac{T}{V}$	Tight-not-	VeryTight
(PLIV)	No		Tigni	VeryTight	veryngni	NO		VeryTight	
Identification	Loose			Tight		Loose		Medium	
Charge mis-assignment veto	No		Vac		N/A				
(ECIDS)	INO		Tes		IN/A				
Conversion rejection	No Yes			N/A			0		
Transverse impact parameter	- 5			- 3					
significance $ d_0 /\sigma_{d_0}$					< 5				
Lonzgitudinal impact parameter	< 0.5 mm								
$ z_0 \sin \theta $	< 0.5 mm								

Channel	Cut-based Control Regions	Signal and MVA-based Control regions
2ℓSS	$TM_{ex}, M_{ex}T, M_{ex}M_{ex}$	TT
3ℓ	L'MM/LMM (L' for μ and L for e)	LTT (L for ℓ_0)
4ℓ	I	LLL
$2\ell SS+1\tau_{had}$	L'L' and MM (for fake τ_{had} CR)	MM
$1\ell + 2\tau_{had}$ and $2\ell + 2\tau_{had}$		L

Variables used for training the BDT in the 2ISS channel

variable	description				
Njets	Number of central jets with $p_T > 25$ GeV				
$\Delta R(\ell_0, \text{jet})$	Angular distance between leading lepton and its closest jet				
$\Delta R(\ell_1, \text{jet})$	Angular distance between sub-leading lepton and its closest jet				
$M(\ell_0, \ell_1)$	Invariant mass of leading lepton and sub-leading lepton				
LD	Linear discriminant defined as: $0.6* E_T^{miss} + 0.4* H_T^{jet7}$				
$p_T(\text{jet}_0)$	Transverse momentum of the leading jet				
$p_T(\text{jet}_1)$	Transverse momentum of the sub-leading jet				
ΔR_{iets}^{avg}	Average ΔR between jets				
$Max(\eta_l)$	Pseudo-rapidity difference between the leading and subleading leptons ($ \eta_{\ell_0} $ and $ \eta_{\ell_1} $)				
$p_T(\ell_1)$	Transverse momentum of the subleading lepton				
$\eta(\ell_0)$	Pseudo-rapidity of the leading lepton				
M(lep, MET)	Invariant mass of leptons and missing transverse energy				
$M_T^{(\ell 0,MET)}$	Transverse mass of the leading lepton and missing transverse energy				
$M_T^{(\ell 1, MET)}$	Transverse mass of the sub-leading lepton and missing transverse energy				
$\eta(\text{jet}_0)$	Pseudo-rapidity of the leading jet				
$\eta(\text{jet}_1)$	Pseudo-rapidity of the sub-leading jet				
$H_{ m T}^{ m jet}$	Scalar sum of the transverse momenta of the jets				
$\Delta R(\ell_0,\ell_1)$	Angular distance between the two same-sign leptons				
M_{b0}	Invariant mass of the leading b-jet				
M_{b1}	Invariant mass of the sub-leading b-jet				

Regions	Selections				
	Signal Regions				
$t\bar{t}H ++$	$2\ell SS + 0\tau_{had}$ pre-MVA selection (cf. Table 7)				
	total charge > 0				
	$Max(BDT_{t\bar{t}H}, BDT_{tH}, BDT_{t\bar{t}W}, BDT_{Other}) = BDT_{t\bar{t}H}$				
<i>ttH</i> −−	$2\ell SS + 0\tau_{had}$ pre-MVA selection				
	total charge < 0				
	$Max(BDT_{t\bar{t}H}, BDT_{tH}, BDT_{t\bar{t}W}, BDT_{Other}) = BDT_{t\bar{t}H}$				
tH	$2\ell SS + 0\tau_{had}$ pre-MVA selection				
	$Max(BDT_{t\bar{t}H}, BDT_{tH}, BDT_{t\bar{t}W}, BDT_{Other}) = BDT_{tH}$				
Control Regions					
$t\bar{t}W ++$	$2\ell SS + 0\tau_{had}$ pre-MVA selection				
	total charge > 0				
	$Max(BDT_{t\bar{t}H}, BDT_{tH}, BDT_{t\bar{t}W}, BDT_{Other}) = BDT_{t\bar{t}W}$				
$t\bar{t}W$	$2\ell SS + 0\tau_{had}$ pre-MVA selection				
	total charge < 0				
	$Max(BDT_{t\bar{t}H}, BDT_{tH}, BDT_{t\bar{t}W}, BDT_{Other}) = BDT_{t\bar{t}W}$				
Other	$2\ell SS + 0\tau_{had}$ pre-MVA selection				
	$Max(BDT_{t\bar{t}H}, BDT_{tH}, BDT_{t\bar{t}W}, BDT_{Other}) = BDT_{Other}$				

	ЛТ	ΙΔς
1	EXPE	RIMENT

Regions	Selections
tīH SR	$t\bar{t}H > 0.2.$
tH SR	$tHjb > 0.25, t\bar{t}H < 0.2.$
tīW CR	$t\bar{t}W > 0.3, t\bar{t}H < 0.2, tHjb < 0.25.$
tīZ CR	$t\bar{t}Z > 0.45, t\bar{t}H < 0.2, tHjb < 0.25, t\bar{t}W < 0.3.$
VV CR	$VV > 0.65, t\bar{t}H < 0.2, tHjb < 0.25, t\bar{t}W < 0.3, t\bar{t}Z < 0.45.$
tī Region	$ t\bar{t} > 0.25, t\bar{t}H < 0.2, tHjb < 0.25, t\bar{t}W < 0.3, t\bar{t}Z < 0.45, VV < 0.65.$
Other Region	$ t\bar{t} < 0.25, t\bar{t}H < 0.2, tHjb < 0.25, t\bar{t}W < 0.3, t\bar{t}Z < 0.45, VV < 0.65.$

Event selection summary in the background control regions

Control regions for:	Diboson	tīZ	Conversions	HF non-prompt
N _{jets}	2 or 3	≥ 4	≥ 0	≥ 2
N _{b-jets}	$1 b^{85}$	с%	$0 \ b^{85\%}$	$1 \ b^{85\%}$
Lepton requirement	3ℓ		$\mu\mu e^*$	$2\ell SS$
Lepton definition		(L, I)	(M, M)	$(T, M_{\text{ex}}) \longrightarrow (M_{\text{ex}}, T) \longrightarrow (M_{\text{ex}}, M_{\text{ex}})$
Lepton $p_{\rm T}$ [GeV]		(10,	15, 15)	(15, 15)
$ m_{\ell^+\ell^-}^{\rm SF} - m_Z $ [GeV]	< 10		> 10	
$ m_{\ell\ell\ell} - m_Z $ [GeV]	¿10		< 10	_
$m_T(\ell_0, E_{\mathrm{T}}^{\mathrm{miss}})$ [GeV]			-	< 250 for $TM_{\rm ex}$ and $M_{\rm ex}T$ pairs
τ_{had} candidates (Medium)	0		0	0
Region split	-	s <u></u>	internal / material	subleading $e/\mu \times (TM_{ex}, M_{ex}T, M_{ex}M_{ex})$
Region naming	3ℓVV	3ℓttZ	3ℓIntC	2ℓ tt(e) _{TM_{ex}} , 2ℓ tt(e) _{M_{ex}T} , 2ℓ tt(e) _{M_{ex}M_{ex}}
			3ℓMatC	$2\ell \operatorname{tt}(\mu)_{TM_{\mathrm{ex}}}, 2\ell \operatorname{tt}(\mu)_{M_{\mathrm{ex}}T}, 2\ell \operatorname{tt}(\mu)_{M_{\mathrm{ex}}M_{\mathrm{ex}}}$