

Top-quark reconstruction at FCC-ee

Top LHC France 2024 — Paris

Kevin Kröninger¹, Romain Madar², Stéphane Monteil², Lars Röhrig^{1,2} 04/09/2024

¹Department of Physics – TU Dortmund University ²Laboratoire de Physique de Clermont – Université Clermont-Auvergne

heinrichhertzstiftung

CC

The FCC project at CERN

- Absence of BSM physics at LHC in TeV range: require a new, broad & powerful tool of exploration
- European Strategy for Particle Physics & Snowmass '21: highest priority on e^+e^- Higgs factory
- Europe's longer-term ambitions: *pp* collider at highest achievable energy (sensitive to energy scales $> 10 \cdot O(E_{LHC})$)
- Motivated by LEP/LHC success: FCC matches sensitivity, precision (and energy scale) landscape
 16 years: FCC-ee: e⁺e⁻ operation from Z-pole to tt threshold

10 years: Shutdown to prepare pp collisions

25 years: FCC-hh: *pp* collisions up to $\sqrt{s} = 100 \text{ TeV}$

FCC-ee: defining the physics case

- \blacksquare We don't know the new physics energy scale \rightarrow go back to precisely measure what we know
- FCC-ee even a discovery machine: statistics allow to identify tiny deviations from SM
- Run plan offers broad opportunities for discoveries

CDR baseline runs (2IPs)

Starting point: EFT approach

Dimension-6 extensions of the SM Lagrangian

$$\mathcal{L}_{ ext{SMEFT}} = \mathcal{L}_{ ext{SM}} + \mathcal{O}(\mathcal{O}^{(5)}) + rac{1}{\Lambda^2} \sum_i C_i^{(6)} O_i^{(6)}$$

Affects production + decay processes of heavy quarks

Idea: How much can FCC-ee tighten the limits on C_i ?

Needs:

- 1. High precisision measurements at the Z-pole (from *b*-quark observables like A_{FB}^{b})
- 2. Variety of observables at the top-threshold

Synergies in heavy-quark measurements: the idea

Global access to SM deviations over different energy scales $(m_Z \rightarrow 2m_t)$ \rightarrow Probe beyond-SM interactions with common set of dimension-6 operators

 \Rightarrow Vertex corrections $\approx 1\,\%$ in the SM. . .

Synergies in heavy-quark measurements: a proven concept

- Combining *t* and *b*-observables: improves constraints on Wilson coefficients [1]
- Especially constraints on four-fermion interactions can be tighten up to $\mathcal{O}(10^{-4})$

- Start from EFT-fit in top-quark sector + extend to *b*-quark observables at FCC-ee
- Today: top-quark reconstruction and observables

Ingredients

- Find observables, that are sensitive to dimension-6 operators \rightarrow Interpolate to extract observable behaviour as function of C_i
- Estimate expected uncertainty
- Combine observables for EFT-fit in top-quark sector: EFTfitter.jl

Sensitive observables

- Study outlined solely on parton-level with MadGraph and dim6_top_LO
- Simulate semi- and dileptonic observables x

$$x_{MG}(\lbrace C_i\rbrace) \approx x_0 + \sum_i C_i x_i + \sum_{i \leq j} C_i C_j x_{i_j}$$

Observables:

Semileptonic:

 $\rightarrow W \text{-helicity fractions:} \\ F_L(\{O_{tW}, O_{bW}\}), F_0(\{O_{tW}, O_{bW}\})$

Sensitive observables

- Study outlined solely on parton-level with MadGraph and dim6_top_LO
- Simulate semi- and dileptonic observables x

$$x_{MG}({C_i}) \approx x_0 + \sum_i C_i x_i + \sum_{i \leq j} C_i C_j x_{i_j}$$

Observables:

Semileptonic:

 $\rightarrow W \text{-helicity fractions:} \\ F_{L}(\{O_{tW}, O_{bW}\}), F_{0}(\{O_{tW}, O_{bW}\})$

Dileptonic:

 $\overline{\rightarrow} \text{Top-quark spin correlations:} \\ C_{ij}(\{O_{tW}, O_{tZ}, O_{Ql}^{(-1)}, O_{te}^{(1)}, O_{tl}^{(1)}, O_{Qe}^{(1)}\})$

Observable interpolations: A_{FB}^t

- Interpolate $x_{MG}(\{C_i\}) \approx x_0 + \sum_i C_i x_i + \sum_{i \leq j} C_i C_j x_{ij}$ to extract parameters x_0, x_i, x_{ij}
- Fit of 869 sampling points in 7 (*C_i*-)dimensions
- Reminder: $A_{FB}^t = \frac{N_F N_B}{N_F + N_B}$ with $N_i = p_0 + p_1 \cdot C_{tW} + p_2 \cdot C_{tW}^2 \rightarrow 72$ parameters
- Fit verification: vary one operator at a time and slice fit function

2D slicing

Ingredients

- $\scriptstyle \bullet$ Find observables, that are sensitive to dimension-6 operators \checkmark
- Estimate expected uncertainty
 - \rightarrow Top-quark ingredients. . . in a lepton collider environment
- Combine observables for EFT-fit in top-quark sector: EFTfitter.jl

Top-quarks in FCC-ee environment

- So far: all on parton-level without showering, detector,
- Let the messy stuff begin... or not?

Top-quarks in FCC-ee environment

- \blacksquare So far: all on parton-level without showering, detector, \ldots
- Let the messy stuff begin... or not?

 $e^+e^-
ightarrow t \overline{t}
ightarrow \ell
u b_1 j_1 j_2 b_2$ at $\sqrt{s} = 365 \, {
m GeV}$

- What is needed: prompt leptons, jets, neutrinos
- Since experimental environments differ a lot, let's take a look at objects
- Disclaimer: only signal events considered here!

Excursion: samples and detector concept

- Samples generated with whizard_v3 + showered with pythia + fast detector simulation with delphes
- Processed through Innovative Detector for an Electron-positron Accelerator (IDEA) detector concept
- Driven by Higgs-sector requirements on hadr. resolution, tracking, vertexing + excellent PID from flavour physics

Prompt leptons

- Beneficial: one primary vertex (PV) per event
- From first principles: prompt lepton expected to originate from region around PV + higher energy

Prompt leptons

- Beneficial: one primary vertex (PV) per event
- From first principles: prompt lepton expected to originate from region around PV + higher energy
- Combination of PV fit + $E_{\ell} > 10 \text{ GeV}$: high purity and high identification efficiency!

Muon energy.

Electron energy.

 $\mathsf{Purity} = \frac{\mathsf{True positive}}{\mathsf{True positive} + \mathsf{False positive}}$

 $\mathsf{Efficiency} = \frac{\mathsf{True \ positive}}{\mathsf{True \ positive} + \mathsf{False \ negative}}$

Jet clustering

- Remove prompt leptons from the list of reconstructed particles
- Jet reconstruction differs for pp and e^+e^- environment
 - \rightarrow Distance measure takes full phase-space information into account (known z-component from $\sqrt{s})$

Hadron collider

- Anti-*k*_t algorithm
- Distance based on $p_{\rm T}$

$$d_{ij} = \min(p_{T,i}^{-2}, p_{T,j}^{-2}) \frac{\Delta R_{ij}^2}{R}$$

Lepton collider

- k_t -algorithm for e^+e^- collider (Durham)
- Distance based on energy and polar angle

$$d_{ij} = 2\min(E_i^2, E_j^2) (1 - \cos(\theta_{ij}))$$

Jet clustering

- Remove prompt leptons from the list of reconstructed particles
- Jet reconstruction differs for pp and e^+e^- environment
 - \rightarrow Distance measure takes full phase-space information into account (known z-component from $\sqrt{s})$

Hadron collider

- Anti-*k*t algorithm
- Distance based on p_T

$$d_{ij} = \min(p_{T,i}^{-2}, p_{T,j}^{-2}) \frac{\Delta R_{ij}^2}{R}$$

Lepton collider

- k_t -algorithm for e^+e^- collider (Durham)
- Distance based on energy and polar angle

 $d_{ij} = 2\min(E_i^2, E_j^2) (1 - \cos(\theta_{ij}))$

• Exclusively cluster to n = 2 or 4 jets

Jet-flavor tagging

Promising results from ParticleNetIdea tagger (on $H \rightarrow jj$ sample so far) [link]

• For simplicity: 80 % uniform *b*-tagging efficiency

- Leptons 🗸 , jets 🗸 , neutrinos?
- Different in semi- and dileptonic channel
 - 1 ℓ Remaining missing energy as neutrino (complete \vec{p} known)
 - 2ℓ Perform minimisation ([2003.12320]) wrt. W-boson mass from

$$p_{j_1} + p_{j_2} + p_{\ell_1} + p_{\ell_2} + p_{\nu} + p_{\bar{\nu}} = (0, 0, \sqrt{s})^{\top}$$

Known up to (10 - 20) MeV

 \rightarrow Parton-level minimisation: reconstruct $\nu\text{-}{\rm four-momenta}$ with error $<2\,\%$ in 60 % of the cases

 2ℓ channel: neutrino momentum resolution.

- Complete $t\overline{t}$ event resolvable
- Higher-level objects (W and t) resolutions look good

- Complete $t\overline{t}$ event resolvable
- Higher-level objects (*W* and *t*) resolutions look good
- Two-dimensional correlations lead to comparable results presented in [2003.12320]

- Complete $t\overline{t}$ event resolvable
- Higher-level objects (*W* and *t*) resolutions look good
- Two-dimensional correlations lead to comparable results presented in [2003.12320]

BUT:

- \sqrt{s} is input for minimisation
- If ISR & FSR lower $\sqrt{s} \rightarrow$ minimisation gets worse!

How to match a *b*-jet

• Utilise a χ^2 -measure to match a *b*-jet to a *W*-boson:

$$d_{i} = \sqrt{\left(\frac{(m_{W_{had}} + m_{b_{i}}) - 173.1}{\sigma_{m_{t}}}\right)^{2} + \left(\frac{(E_{W_{had}} + E_{b_{i}}) - 182.45}{\sigma_{E_{t}}}\right)^{2} + (W_{lep} + b_{j})}$$

Besides $d_{[0,1]}$: kinematic quantites like m_t , $\frac{|d_0-d_1|}{d_0+d_1}$, ...

Ingredients

- $\scriptstyle \bullet$ Find observables, that are sensitive to dimension-6 operators \checkmark
- Estimate expected uncertainty
 - \rightarrow Top-quark ingredients. . . in a lepton collider environment \checkmark
 - \rightarrow How much room to move for the C_i 's: extract uncertainties
- Combine observables for EFT-fit in top-quark sector: EFTfitter.jl

Uncertainty estimates: A_{FB}^t (1 ℓ channel)

- First attempt: A^t_{FB} from fully reconstructed top-quarks
- Second attempt: A_{FB}^{t} from prompt lepton as direction estimator
- Studies of varying simulation inputs WIP (renormalisation scale, *m*_t, parton shower, ...)

$$\rightarrow A_{\text{FB}}^t = 0.168 \pm 0.001 (\text{stat.}) \pm \mathcal{O}(\sigma_{\text{stat.}})$$

Uncertainty estimates: $\cos(\theta_{\ell\ell})$ and C_{ij} (2 ℓ channel)

- In the 2*l*-channel, $cos(\theta_{\ell \ell})$ and the spin density matrix R are of particular interest
- Top-quark transfers spin information to angular distribution of decay products

 $R \propto A\mathbf{1} \otimes \mathbf{1} + B_i^+ \sigma^i \otimes \mathbf{1} + B_i^- \mathbf{1} \otimes \sigma^i + C_{ij} \sigma^i \otimes \sigma^j$

• Matrix C characterises the correlation between t and \overline{t} spins

• $\mathcal{O}(\sigma_{\text{stat}}) = 2 \cdot 10^{-3}$, systematic uncertainty studies may be beyond the scope of this work

Ingredients

- $\scriptstyle \bullet$ Find observables, that are sensitive to dimension-6 operators \checkmark
- $\scriptstyle \bullet$ Estimate expected uncertainty \checkmark
- Combine observables for EFT-fit in top-quark sector: EFTfitter.jl

EFT fit (preliminary)

- EFTfitter.jl: tool for constraining parameters of physics models using Bayesian inference in julia
- First attempt: EFT fit with nominal values of the interpolations at $C_i = 0$ + uncertainties from observables
- Start with (O_{tW}, O_{tZ}) turned on and turn all other operators off

One- and two dimensional representations.

Contribution from different measurements.

Inclusion of more operators and observables WIP

Conclusion

- Besides broad Z- and H-programme: e⁺e⁻ environment opens new possibilities in top-quark physics
- Additional *tt*-threshold scan from (345 350) GeV: determine top-mass and width up to *O*(50) MeV
- Here: connect flavour observables to access BSM physics consistently in SMEFT

 \rightarrow Start with first results from semi- and dileptonic $t\bar{t}$ observables

- Extension to EWPO (R_b and A_{FB}^b) at a later stage
- Reminder: no backgrounds included yet, first studies here

 $t\bar{t}$ threshold scan.

Conclusion

- Besides broad Z- and H-programme: e⁺e⁻ environment opens new possibilities in top-quark physics
- Additional *tt*-threshold scan from (345 350) GeV: determine top-mass and width up to *O*(50) MeV
- Here: connect flavour observables to access BSM physics consistently in SMEFT

 \rightarrow Start with first results from semi- and dileptonic $t\bar{t}$ observables

- Extension to EWPO (R_b and A_{FB}^b) at a later stage
- Reminder: no backgrounds included yet, first studies here

 $t\bar{t}$ threshold scan.

Thank you for your attention!

• How to match a *b*-jet to a *W*-boson? $ightarrow \chi^2$ -measure:

$$d_{i} = \sqrt{\left(\frac{(m_{W_{had}} + m_{b_{i}}) - 173.1}{\sigma_{m_{t}}}\right)^{2} + \left(\frac{(E_{W_{had}} + E_{b_{i}}) - 182.45}{\sigma_{E_{t}}}\right)^{2} + (W_{lep} + b_{j})}$$

Besides $d_{[0,1]}$: kinematic quantites like m_t , $\gamma_t = \frac{\sqrt{s}}{2m_t}$, or $\frac{|d_0 - d_1|}{d_0 + d_1}$, ...

• How to match a *b*-jet to a *W*-boson? $ightarrow \chi^2$ -measure:

$$d_{i} = \sqrt{\left(\frac{(m_{W_{had}} + m_{b_{i}}) - 173.1}{\sigma_{m_{t}}}\right)^{2} + \left(\frac{(E_{W_{had}} + E_{b_{i}}) - 182.45}{\sigma_{E_{t}}}\right)^{2} + (W_{lep} + b_{j})}$$

• Besides $d_{[0,1]}$: kinematic quantites like m_t , $\gamma_t = \frac{\sqrt{s}}{2m_t}$, or $\frac{|d_0-d_1|}{d_0+d_1}$, ...

• How to match a *b*-jet to a *W*-boson? $ightarrow \chi^2$ -measure:

$$d_{i} = \sqrt{\left(\frac{(m_{W_{had}} + m_{b_{i}}) - 173.1}{\sigma_{m_{t}}}\right)^{2} + \left(\frac{(E_{W_{had}} + E_{b_{i}}) - 182.45}{\sigma_{E_{t}}}\right)^{2} + (W_{lep} + b_{j})}$$

• Besides $d_{[0,1]}$: kinematic quantites like m_t , $\gamma_t = \frac{\sqrt{s}}{2m_t}$, or $\frac{|d_0 - d_1|}{d_0 + d_1}$, ...

• How to match a *b*-jet to a *W*-boson? $ightarrow \chi^2$ -measure:

$$d_{i} = \sqrt{\left(\frac{(m_{W_{had}} + m_{b_{i}}) - 173.1}{\sigma_{m_{t}}}\right)^{2} + \left(\frac{(E_{W_{had}} + E_{b_{i}}) - 182.45}{\sigma_{E_{t}}}\right)^{2} + (W_{lep} + b_{j})}$$

• Besides $d_{[0,1]}$: kinematic quantites like m_t , $\gamma_t = \frac{\sqrt{s}}{2m_t}$, or $\frac{|d_0-d_1|}{d_0+d_1}$, ...

W-helicity fractions (preliminary)

W-helicity fractions sensitive to Wtb structure

 \rightarrow Partial decay rate for given helicity state (left-, right-handed + longitudinal): $F_{L,R,0} = \frac{\Gamma_{L,R,0}}{\Gamma}$

• Experimentally: helicity angle $\cos(\theta^*)$ as angle between (ℓ, t) in W rest frame

$$\frac{1}{\Gamma}\frac{d\Gamma}{d\cos(\theta^*)} = \frac{3}{8}(1-\cos(\theta^*))^2 F_{\rm L} + \frac{3}{4}\sin(\theta^*)^2 F_0 + \frac{3}{8}(1+\cos(\theta^*))^2 F_{\rm R}$$

Since W-spin not directly accessible from simulated samples, calibration procedure installed

W-helicity fractions - continued (preliminary)

Reweight parton-level $\cos(\theta^*)$ via

$$w = \frac{\frac{3}{8}(1 - \cos(\theta_{gen}^*))^2 F_L + \frac{3}{4}\sin(\theta_{gen}^*)^2 F_0 + \frac{3}{8}(1 + \cos(\theta_{gen}^*))^2 F_R}{\frac{3}{8}(1 - \cos(\theta_{gen}^*))^2 F_L^{SM} + \frac{3}{4}\sin(\theta_{gen}^*)^2 F_0^{SM} + \frac{3}{8}(1 + \cos(\theta_{gen}^*))^2 F_R^{SM}}$$

- Fit the reweighted object-level distribution and check impact on the observables
- With LinearNDInterpolator: $(F_{L}^{Object-level}, F_{0}^{Object-level}) \rightarrow (F_{L}^{Parton-level}, F_{0}^{Parton-level}), \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

W-helicity fractions – continued (preliminary)

- Also use different generator to get first handle on systematic uncertainties (MadGraph5 at LO)
- Reweight alternative sample on parton-level to the nominal one
- Apply the interpolation from the nominal sample to check impact on the measurement

• Statistical precision of $\mathcal{O}(2 \cdot 10^{-3})$, systematic of $\mathcal{O}(10^{-2})$ (due to LO vs. NLO kinematic differences)

Heavy-quark measurements at the Z-pole

- Best suited at FCC-ee for rich heavy-quark programme? $\rightarrow Z$ -pole with $N_Z = 5 \cdot 10^{12}$
- Coupling of the Z to b-quark probes fundamental SM parameters

	Measurement	Pull	Pull -3 -2 -1 0 1 2 3
m _z [GeV]	91.1871 ± 0.0021	.08	i i
Γ _z [GeV]	2.4944 ± 0.0024	56	-
σ_{hadr}^0 [nb]	41.544 ± 0.037	1.75	
R _e	20.768 ± 0.024	1.16	
A ^{0,e}	0.01701 ± 0.00095	.80	-
A _e	0.1483 ± 0.0051	.21	•
A _r	0.1425 ± 0.0044	-1.07	-
sin²θ ^{lept}	0.2321 ± 0.0010	.60	-
m _w [GeV]	80.350 ± 0.056	62	-
R _b	0.21642 ± 0.00073	.81	-
R _c	0.1674 ± 0.0038	-1.27	
A ^{0,b}	0.0988 ± 0.0020	-2.20	
A ^{0,c}	0.0692 ± 0.0037	-1.23	_
A _b	0.911 ± 0.025	95	-
A _c	0.630 ± 0.026	-1.46	_
sin ² θ ^{lept}	0.23099 ± 0.00026	-1.95	
sin²θ _w	0.2255 ± 0.0021	1.13	
m _w [GeV]	80.448 ± 0.062	1.02	-
m _t [GeV]	174.3 ± 5.1	.22	•
$\Delta \alpha_{had}^{(5)}(m_Z)$	0.02804 ± 0.00065	05	
			-3-2-10123

Heavy-quark measurements at the Z-pole

- Best suited at FCC-ee for rich heavy-quark programme? $\rightarrow Z$ -pole with $N_Z = 5 \cdot 10^{12}$
- Coupling of the Z to b-quark probes fundamental SM parameters
- Statistics allow for new ways: combining flavour and EWPO → Ultra pure beauty-flavour tagging

	Measurement	Pull	Pull -3 -2 -1 0 1 2 3
m _z [GeV]	91.1871 ± 0.0021	.08	
Γ _z [GeV]	2.4944 ± 0.0024	56	-
$\sigma_{hadr}^{0}\left[nb ight]$	41.544 ± 0.037	1.75	
R _e	20.768 ± 0.024	1.16	
A ^{0,e} _{fb}	0.01701 ± 0.00095	.80	
A _e	0.1483 ± 0.0051	.21	•
Α _τ	0.1425 ± 0.0044	-1.07	-
$sin^2 \theta_{eff}^{lept}$	0.2321 ± 0.0010	.60	-
m _w [GeV]	80.350 ± 0.056	62	-
R _b	0.21642 ± 0.00073	.81	
R _c	0.1674 ± 0.0038	-1.27	
A ^{0,b}	0.0988 ± 0.0020	-2.20	
A ^{0,c}	0.0692 ± 0.0037	-1.23	-
A _b	0.911 ± 0.025	95	-
A _c	0.630 ± 0.026	-1.46	_
$sin^2 \theta_{eff}^{lept}$	0.23099 ± 0.00026	-1.95	
sin²θ _w	0.2255 ± 0.0021	1.13	_
m _w [GeV]	80.448 ± 0.062	1.02	_
m _t [GeV]	174.3 ± 5.1	.22	•
$\Delta \alpha_{had}^{(5)}(m_Z)$	0.02804 ± 0.00065	05	
			-3-2-10123

Principle of the measurement

- \blacksquare Produce $Z \rightarrow q \bar{q}$ events at $\sqrt{s} = 91 \, {\rm GeV}$
- Event topology: two back-to-back particle sprays (hemispheres)
- With $N_{Z \to q\bar{q}} = 5 \cdot 10^{12}$ events: measurements limited by $\sigma_{\text{syst.}}$
- Need to reduce $\sigma_{\text{syst.}}$ to $\mathcal{O}(\sigma_{\text{stat.}})$

Principle of the measurement: R_b

• Sensitive to vertex corrections: $R_b = \frac{\Gamma_{Z \to b\bar{b}}}{\Gamma_{Z \to q\bar{q}}}$

- **Double tag:** $N_2 = N_Z \cdot (R_b \varepsilon_b^2 C_b + R_c \varepsilon_c^2 C_c + R_{uds} \varepsilon_{uds}^2 C_{uds})$
- N_1 , N_2 , N_Z counted, all other unknown: measure R_b and ε_b simultaneously
- Standard LEP tools (vertex charge, lepton tag): $\sigma_{\text{syst.}}$ dominated by *udsc*-misidentification

Principle of the measurement: R_b

- Sensitive to vertex corrections: $R_b = \frac{\Gamma_{Z \to b\bar{b}}}{\Gamma_{Z \to a\bar{a}}}$
- Single tag: $N_1 = 2N_Z \cdot (R_b \varepsilon_b + R_c \varepsilon_e + R_{uds} \varepsilon_{uds})$
- **Double tag:** $N_2 = N_Z \cdot (R_b \varepsilon_b^2 C_b + R_c \varepsilon_c^2 C_e + R_{uds} \varepsilon_{uds}^2 C_{uds})$
- N_1 , N_2 , N_Z counted, all other unknown: measure R_b and ε_b simultaneously
- Standard LEP tools (vertex charge, lepton tag): $\sigma_{syst.}$ dominated by *udsc*-misidentification

Proposal: b-hemisphere tagger

Hemisphere **flavour**- and **charge** tagging by exclusively reconstructing *b*-hadrons

- Potential purity of 100 %
- Efficiency of 1%

Setting the stage

• Exclusive *b*-tagger can play **central role** to reduce $\sigma^{\text{syst.}}$

	R _b
<i>b</i> -hadrons	B^+ , B^0_d , B^0_s , Λ^0_b
Requirements	Flavour
Advantages	Remove <i>udsc</i> -physics contribution
Remaining $\sigma_{ m syst.}$	Hemisphere correlation <i>C_b</i>

• $\varepsilon_b \geq 1.11$ % with > 200 *b*-hadron decay modes \checkmark

■ Validate purity on $4 \cdot 10^7 Z \rightarrow q\bar{q}$ (winter2023) on 6/200 representative modes (varying $N_{\text{trk.}}$, N_{π^0})

1.	Fully charged, two tracks	$B^+ ightarrow ar{D}^0 \pi^+ ightarrow [K^+ \pi^-]_{ar{D}^0} \pi^+$
2.	Fully charged, three tracks	$B^+ \to \bar{D}^0 D^+_s \to [K^+ \pi^-]_{\bar{D}^0} [K^+ K^- \pi^+]_{D^+_s}$
3.	Fully charged, four tracks	$B^+ o ar{D}^0 \pi^+ o [K^+ 2 \pi^- \pi^+]_{ar{D}^0} \pi^+$
4.	One π^{0} , two tracks	$B^+ ightarrow ar{D}^0 \pi^+ ightarrow [{\cal K}^+ \pi^- \pi^0]_{ar{D}^0} \pi^+$
5.	Two π^{0} , two tracks	$B^+ ightarrow ar{D}^0 \pi^+ ightarrow [K^+ \pi^- 2 \pi^0]_{ar{D}^0} \pi^+$
6.	Two leptons	$B^+ o J/\psi {\cal K}^+ o [\ell^+ \ell^-]_{J/\psi} {\cal K}^+$

Setting the stage

Exclusive b-tagger can play central role to reduce σ^{syst.}

	R _b
<i>b</i> -hadrons	B^+ , B^0_d , B^0_s , Λ^0_b
Requirements	Flavour
Advantages	Remove udsc-physics contribution
Remaining $\sigma_{ m syst.}$	Hemisphere correlation C_b

• $\varepsilon_b \geq 1.11$ % with > 200 *b*-hadron decay modes \checkmark

■ Validate purity on $4 \cdot 10^7 Z \rightarrow q\bar{q}$ (winter2023) on 6/200 representative modes (varying $N_{\text{trk.}}$, N_{π^0})

Fast Simulation (IDEA)

Exclusive *b*-hadron reconstruction

- Combine K and π (100% particle-ID) tracks to D^0 candidates (emulate 50 µm vertex resolution)
- D^0 candidates + π track to B^+ candidate: cut on B^+ flight distance of 300 µm (boost of ~ 6)
- Observable to quantify **purity**: invariant *b*-hadron mass spectrum with $E_B > 20 \text{ GeV}$

First: focus on **mass-peak region** to get control on $\sigma^{\text{syst.}}$

 \rightarrow Purity of 99.8%, contamination in signal region from $q \rightarrow q + [b\bar{b}]_g$

Exclusive *b*-hadron reconstruction

- Combine K and π (100% particle-ID) tracks to D^0 candidates (emulate 50 µm vertex resolution)
- D^0 candidates + π track to B^+ candidate: cut on B^+ flight distance of 300 µm (boost of ~ 6)
- Observable to quantify **purity**: invariant *b*-hadron mass spectrum with $E_B > 20 \text{ GeV}$

First: focus on **mass-peak region** to get control on $\sigma^{\text{syst.}}$

 \rightarrow Purity of 99.8%, contamination in signal region from $q \rightarrow q + [b\bar{b}]_g$

Exclusive *b*-hadron reconstruction

- Combine K and
 D⁰ candidates +
- But there's more, isn't there? Yes!

Fast Simulation (IDEA)

ex resolution)

- post of \sim 6)
- Observable to quantify **purity**: invariant *b*-hadron mass spectrum with $E_B > 20 \text{ GeV}$

Part. reconstructed are no background! → efficiency gain by enlarging mass window to no loss in purity!
 But for now: Examine B⁺ candidates in mass-peak region

L. Röhrig | 04/09/2024

Hemisphere correlation: PV measurement uncertainty

• LEP found: C_b mainly departed from 1 because of **primary-vertex measurement uncertainty** σ_{PV}

Hemisphere correlation: PV measurement uncertainty

- LEP found: C_b mainly departed from 1 because of **primary-vertex measurement uncertainty** σ_{PV}
- LEP did: reconstructed two PV per hemisphere
- Sample: 10^6 FullSim CLD events of $B^+ \to [K^+\pi^-]_{\bar{D}^0}\pi^+$ (forcing both legs with EvtGen)

Hemisphere correlation: PV measurement uncertainty

- LEP found: C_b mainly departed from 1 because of **primary-vertex measurement uncertainty** σ_{PV}
- LEP did: reconstructed two PV per hemisphere
- Sample: 10⁶ FullSim CLD events of $B^+ \to [K^+\pi^-]_{\bar{D}^0}\pi^+$ (forcing both legs with EvtGen)
- Here: select tracks for reconstruction by using optimised cuts (v_1 and v_2) in luminous region

- So far: systematic uncertainty considered
 - Hemisphere correlation: $C_b = 1.009 \pm 0.003 \Rightarrow \frac{\sigma(\Delta C_b)}{\Delta C_b} \approx 33\%$

Full Simulation (CLD)

Results: R_b uncertainty budget

- So far: systematic uncertainty considered
 - Hemisphere correlation: $C_b = 1.009 \pm 0.003 \Rightarrow \frac{\sigma(\Delta C_b)}{\Delta C_b} \approx 33\%$
 - Signal region contamination from gluon splitting: $g_{b\bar{b}} = (2.47 \pm 0.56) \cdot 10^{-3} \Rightarrow \frac{\sigma(g_{b\bar{b}})}{g_{b\bar{b}}} \approx 23\%$

Current syst. precision

1% syst. precision

• Target: $\sigma^{\text{stat.}}(R_b) = 2.2 \cdot 10^{-5}$ with exclusive tagger and $\varepsilon_b = 1\%$

Luminous region

 $\sigma^{\text{tot.}}(R_b) = 6.4 \cdot 10^{-4}$

 $\sigma^{\text{tot.}}(R_b) = 2.9 \cdot 10^{-5}$

Extension for the measurement of A_{FB}^b

- We have an ultra pure tagger at hand: what else?
- As seen: exclusive *b*-tagger can play central role to reduce $\sigma^{\text{syst.}}$
- Especially interesting for $A_{\text{FB}}^{b} = \frac{N_{\text{F}} N_{\text{B}}}{N_{\text{F}} + N_{\text{B}}}$ $\rightarrow \text{Expected } \sigma_{\text{stat.}}(A_{\text{FB}}^{b}) = 1.05 \cdot 10^{-5}$ (current: $\sigma_{\text{tot.}}(A_{\text{FB}}^{b}) = 1.6 \cdot 10^{-3}$)

	R _b	A ^b _{FB}
<i>b</i> -hadrons Requirements	B^+ , B^0_d , B^0_s , Λ^0_b Flavour	B ⁺ , Λ _b Flavour, <i>p</i> & Q
	Remove <i>udsc</i> -physics contribution	
Advantages		Overcome mixing dilutions and possibly reduce hemi- sphere confusion
Remaining $\sigma_{\rm syst.}$	Hemisphere correlation C_b	QCD corrections

Systematic uncertainty of A^b_{FB}

- Dominant systematic uncertainty: (hard) gluon radiation from b-quark (up to hemisphere confusion)
- Since *b*-quark direction not directly accessible: use **thrust** $\vec{\mathcal{T}}$
- Direction of reconstructed *b*-hadron: estimator for gluon emission quantity
- The smaller the angle $\angle(\vec{B}_{tag}, \vec{T})$, the softer is the gluon radiation

Full Simulation (CLD)

Gluon radiation estimator: $\angle(\vec{B}_{tag}, \vec{T})$

- Quantify the amount of gluon radiation by $\angle(\vec{B}, \vec{T})$
- $\scriptstyle \bullet$ Cut on maximally allowed angle reduces QCD-related effects by 50 %

Gluon radiation estimator: $\angle(\vec{B}_{tag}, \vec{T})$

- Quantify the amount of gluon radiation by $\angle(\vec{B},\vec{T})$
- $\scriptstyle \bullet$ Cut on maximally allowed angle reduces QCD-related effects by 50 %
- Slight degradation of statistical precision (~7%) to $\sigma_{\text{stat.}} = 1.12 \cdot 10^{-5}$ (Z-pole extrapolation)

 $ightarrow \sigma_{
m syst.}$ WIP by varying *b*-fragmentation fraction, renormalisation scale & parton shower model