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From Theory to Data and Back
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Setting 
• Large Hadron Collider at CERN 
• Proton collisions at 13 TeV 
• Huge dataset 1Pb/s before trigger selection ∼

Goal 
• Understand full dataset from 1st principles 
• Precision measurements of the SM 
• Find signs of new physics (eg dark matter) 

Need efficient extraction of all information from data  use data science methods →



ML for big data in particle physics

Generative models

Regression

Classification

Graph networks 

Bayesian networks 

Top tagging 

Calibration & uncertainties 

M. Backes et al. [2212.08674]

G. Kasieczka et al. [2003.11099]

G. Kasieczka et al. [1902.09914]
Unfolding

Complete citations  
https://iml-wg.github.io/HEPML-LivingReview/

𝒪(800)

Track reconstruction 
Kaggle challenge

Amplitude estimation 

Event generation

J. Aylett-Bullock, et al. [2106.09474]
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Anomaly detection 

A. Butter et al. [2110.13632]

B. Dillon et al. [2108.04253]
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https://arxiv.org/abs/2212.08674
https://arxiv.org/abs/2003.11099
http://arxiv.org/pdf/1902.09914.pdf
https://arxiv.org/abs/2106.09474
https://arxiv.org/abs/2110.13632
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Neural networks in a nutshell

Training concept: 
Minimization of loss function with back propagation (gradient descent)



Different types of layers & networks
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Dense networks 
Standard network

Convolutional neural network (CNN) 
Implement equivariance

Pooling layer (max/min/mean/std) 
Implement invariance
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Data determine the network

Data with intrinsic order 
Example: events with structure

Images 
Example: Calorimeter cells

event = [pT,e+, pT,e−, ηe+, ηe−, pT,j]

Unordered sets 
Example: Jet constituents

?
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Graph  networks



Graph networks
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How to represent a graph

Node Edge

pixels                            
neighbouring pixel   

 node 
 neighbouring node (graph edges) 

→
→

Image vs Graph



Graph networks
1806.01261

 edge convolution →

⃗v′ i =
1
k

k

∑
j=1

hΘ( ⃗vi, ⃗vij − ⃗vi)

Aggregation function   is independent of h i, j
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Examples 

• Node classification (assign label to a node) 
• Does this hit belong to my track? 

• Graph classification (assign label to graph) 
• Top vs QCD jet 
• B-jet identification 
• Event classification (Signal vs Background) 

• Graph generation 
• Generate new jet 

• Embedding into alternative space for better interpretation

What can we do with graph networks?



Top jet classification
1707.08966

-2 -1.5 -1 -0.5 0 0.5 1.0 1.5 2
¥

-100

-75

-50

-25

0

25

50

75

100

¡

101

102

C
al

or
im

et
er

E
[G

eV
]

Calorimeter image: 
Mostly empty & No tracking information 

 CNN not suited →

Instead:  
 Set of particle flow objects 
 They become set of nodes

→
→

Optional: Build graph for instance from nearest neighbors

Data set 

• Top vs QCD 
• Calorimeter image  & Particle Flow objects 
• Pythia8 + Delphes 3 
• FastJet3 anti-kt with R = 1.5 
•  GeV |ηfat | < 1.0, pT,jet = 350 … 450
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Lorentz Layer
Physics inspired layer that acts on nodes [1707.08966]

Transform  Lorentz vectors into physics motivated objects.  

Transformation in place  
 Aggregation over other objects 

Distance  encodes edge information 

Not exactly graph concept, as weights are index dependent

djm
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At high  :  
PF based network outperforms CNN 

 tracking information is crucial !

pT

→



ParticleNet
[ 1902.08570, H. Qu, L. Gouskos]

• Jet = unordered set of particles 
• Particle cloud (permutation invariant) 
• Translational symmetry 

• K-nearest neighbours define local patch 
 

•  indicates an aggregation function    
(max, mean, sum, …) 

•  is a 3 layer MLP 

• Dynamically update edges for each layer 

• Hyperparameter: 
• # neighbors, latent dim, dropout, 

batchnorm, learning rate, ….

x′ i = ⊡k
j=1 ϕθ(xi, xij − xi)

⊡

ϕθ
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Lorentz Net
2201.08187, S. Gong et al.

Combination of graph network and physics knowledge 

Lorentz Net encodes Lorentz equivariance Top tagging dataset

 Physics layers enable better performance for smaller datasets→
 are the 4-momenta 
 embedds charge, PID, etc. 

  Minkowski product 
 

 are neural networks

x0

h0

⟨ ⋅ , ⋅ ⟩
ψ( ⋅ ) = sgn( ⋅ ) log( | ⋅ | + 1)
ϕx
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What about uncertainties?
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Known dependence on  
nuisance parameters

Unknown dependence on  
nuisance parameters

Systematic uncertainties  
on data

Uncertainties  
from neural networks

 Condition on nuisance parameters

Calibration with toys

Limited training data 
Insufficient network complexity 

Dependence on initialization 
Stochastic training process 

Ensemble methods (expensive)

Bayesian networks

Discriminator to quantize deviations

Uncertainties vs methods
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Limitations of a standard network

Standard approach 

Training data  
 

Loss  

T = (phase space points x, Amplitudes A′ (x))

ℒ = (A′ (x) − NN(x))2

Example 
 @LO 

90k training amplitudes 
870k test amplitudes  

gg → γγg(g)  Need better formulation of the problem 

 Find  (from now on x is implicit) 

 

→

→ p(A |x, T )

→ p(A) = ∫ dw p(A |w)p(w |T )

PROBLEM: For limited data there is no unique solution



19

Capturing probabilities with Bayesian networks 
Building the loss function 

Approximate   by minimizing KL divergence q(w)

ℒBNN = KL[q(w), p(w |T )]

= ∫ dw q(w) log
q(w)

p(w |T )

= ∫ dw q(w) log
q(w)p(T )

p(w)p(T |w)

= KL[q(w), p(w)] − ∫ dw q(w) log p(T |w)

Gaussian prior 

σ2
q − σ2

p + (μq − μp)2

2σ2
p

+ log
σp

σq

Gaussian uncertainty

 p(A) = ∫ dw p(A |w)p(w |T ) ≈ ∫ dw p(A |w)q(w)

2

2

1

1

Bayesian network 

1 2
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Results - out of the box

7.5 5.0 2.5 0.0 2.5 5.0 7.5
(ANN( )-A) / model( )

10 7
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training test

 ( = 0.22,
     = 0.97)

     

gg g  ( = 0.16,
= 0.96)

+ Deviations at 1 percent level

Performance worse for rare points with large amplitudes (collinear) Roughly Gaussian but enhanced tails

Precision Δ(train) =
ANN − Atrain

ANN
Calibration Δ(train) =

ANN − Atrain

ANN
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Loss boosting

7.5 5.0 2.5 0.0 2.5 5.0 7.5
(ANN( )-A) / model( )

10 6

10 4

10 2

100

n
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rm

a
li

z
e
d

training

test

 ( = 0.23,
     = 0.81)

 ( = 0.24,
     = 0.80)

gg g
loss-boosted

Enforce training on samples with  
 include them 5 times in each epoch 

 Repeat 4 times

ΔA > 2σ
→

→

No change in performance Tails reproduced for training data 
Improvement for test data
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Performance boosting

7.5 5.0 2.5 0.0 2.5 5.0 7.5
(ANN( )-A) / model( )

10 5

10 4

10 3

10 2

10 1

n
o
rm

a
li

z
e
d training

test

process-boosted

 ( = 0.17,
= 0.96)

 ( = 0.00,
= 0.94)

gg g

Enforce training on 200 samples with largest uncertainty  
 include them +3 times in each epoch 

 Repeat 20 times

σtot
→

→

Significant improvement in performance



Inverting the simulation chain
Unfolding 
detector 
effects

Parameter inference 
MEM

Inverting to parton level

Requirements High - dimensional 
Bin - independent 
Statistically well defined

23
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Unfolding



Flow based unfolding methods
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1. Train c NN 2. Predict

MC Truth

MC Reco

Unfolded

Measured

ExperimentSimulation

Detector
Level

Particle
Level

Learn p(part |det)



cINN unfolding

Probability distribution 
x ∼ Pparton

 Reconstructed objects←

Normal distribution 
z ∼ 𝒩

Training

Unfolding

cINN

Given a reconstructed event: 
What is the probability distribution at particle level? 
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High-dimensional. Bin independent. Robust.

ℒ = log p(θ |x, reco)
= log p(z |θ, reco) + log JNN + p(θ)



Inverting inclusive distributions
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Training on inclusive dataset Evaluate exclusive 2/3/4 jet events

 High-dimensional 
 Bin-independent 
 Statistically well defined ?

 ISR  2/3/4 jet eventspp > WZ > qq̄l+l−+ →

M. Bellagente et al. [2006.06685]
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https://arxiv.org/abs/2006.06685


Event-wise unfolding
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No deterministic mapping! 
Check calibration of probability density for individual event unfolding

 High-dimensional 
 Bin-independent 
 Statistically well defined 

M. Bellagente et al. [2006.06685]
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https://arxiv.org/abs/2006.06685
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Example:  + EFTZγγ
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Summary

 Particularly suitable for unordered sets of objects 
 Various applications from top tagging to track reconstruction 
 Including physics based layers makes networks more efficient!

 Same validation as for other techniques (closure tests, toys, etc.) 
 Additional tools to evaluate stability and uncertainties (Bayesian networks, ensembles,..)

 Graph networks 

Uncertainties

 ML enables new analysis methods for high-dim. data 
 Unfolding with generative and reweighting methods 
 MEM and many more

Unfolding


