Machine Learning

Top LHC France 2024 - LPNHE Paris

Anja Butter, LPNHE

Machine Learning Graph networks, Uncertainties and Unfolding

Top LHC France 2024 - LPNHE Paris

Anja Butter, LPNHE

From Theory to Data and Back

Setting

- Large Hadron Collider at CERN
- Proton collisions at 13 TeV
- **Huge** dataset ~1Pb/s before trigger selection

Need efficient extraction of all information from data \rightarrow use data science methods

Goal

- Understand full dataset from 1st principles
- Precision measurements of the SM
- Find signs of new physics (eg dark matter)

ML for big data in particle physics

Top tagging

Anomaly detection

Unfolding

M. Backes et al. [2212.08674]

Calibration & uncertainties

Complete citations $\mathcal{O}(800)$ https://iml-wg.github.io/HEPML-LivingReview/

Neural networks in a nutshell

Neuron

https://hackernoon.com/overview-of-artificial-neural-networks-and-its-applications-2525c1addff7

Popular activation functions:

- Re(ctified) L(inear) U(nit): $\Theta(x)x$
- Sigmoid: $\frac{1}{1+e^{-x}}$

Neural network

Training concept: Minimization of loss function with back propagation (gradient descent)

Different types of layers & networks

0	1	1	$1_{\times 1}$	•0.	.0,	0
0	0	1	$1_{\times 0}$	$1_{\times 1}$	0 _{×0}	0
0	0	0	$1_{\times 1}$	1 _{×0}	$1_{\times 1}$	0
0	0	0	1	1.	0	0
0	0	1	1	0	0	0
0	1	1	0	0	0	0
1	1	0	0	0	0	0
Ι						

Dense networks Standard network

Single depth slice Х 4 6 6 8 3 3 0 2 Υ

Convolutional neural network (CNN) Implement equivariance

Pooling layer (max/min/mean/std) Implement invariance

Data determine the network

Data with intrinsic order Example: events with structure

Images Example: Calorimeter cells

$$event = [p_{T,e^+}, p_{T,e^-}, \eta_{e^+}, \eta_{e^-}, p_{T,j}]$$

						_
0	1	1	$1_{\times 1}$	∙0.	.0,	0
0	0	1	$1_{\times 0}$	$1_{\times 1}$	0 _{×0}	0
0	0	0	$1_{\times 1}$	$1_{\times 0}$	$1_{\times 1}$	0
0	0	0	1	·1.	0	0
0	0	1	1	0	0	0
0	1	1	0	0	0	0
1	1	0	0	0	0	0
т						

Ι

 \mathbf{K}

 $\mathbf{I} * \mathbf{K}$

Unordered sets Example: Jet constituents

Graph networks

How to represent a graph

Graphnetworks

Image vs Graph

pixels \rightarrow node neighbouring pixel \rightarrow neighbouring node (graph edges)

(a) Edge update

(b) Node update

 \rightarrow edge convolution $\vec{v}_i' = \frac{1}{k} \sum_{j=1}^n h_{\Theta}(\vec{v}_i, \vec{v}_{i_j} - \vec{v}_i)$

Aggregation function

h is independent of *i*, *j*

Graph networks

1806.01261

(c) Global update

What can we do with graph networks?

Examples

- Node classification (assign label to a node) • Does this hit belong to my track?
- Graph classification (assign label to graph) • Top vs QCD jet • *B-jet identification*
- - Event classification (Signal vs Background)
- Graph generation • Generate new jet

• Embedding into alternative space for better interpretation

Top jet classification 1707.08966

Data set

- Top vs QCD
- Calorimeter image & Particle Flow objects
- Pythia8 + Delphes 3
- FastJet3 anti-kt with R = 1.5
- $|\eta_{fat}| < 1.0, p_{T,jet} = 350 \dots 450 \,\text{GeV}$

Calorimeter image:

Mostly empty & No tracking information

 \rightarrow CNN not suited

Instead:

 \rightarrow Set of particle flow objects

 \rightarrow They become set of nodes

Optional: Build graph for instance from nearest neighbors

Lorentz Layer Physics inspired layer that acts on nodes [1707.08966]

Transform Lorentz vectors into physics motivated objects.

$$\tilde{k}_{j} \stackrel{\text{LoLa}}{\longrightarrow} \hat{k}_{j} = \begin{pmatrix} m^{2}(\tilde{k}_{j}) \\ p_{T}(\tilde{k}_{j}) \\ w_{jm}^{(E)} E(\tilde{k}_{m}) \\ w_{jm}^{(d)} d_{jm}^{2} \end{pmatrix}$$

$$d_{jm}^2 = (ilde{k}_j - ilde{k}_m)_\mu \ g^{\mu
u} \ (ilde{k}_j - ilde{k}_m)_
u$$

Transformation in place Aggregation over other objects Distance d_{jm} encodes edge information

Not exactly graph concept, as weights are index dependent

At high p_T : PF based network outperforms CNN \rightarrow tracking information is crucial !

ParticleNet [1902.08570, H. Qu, L. Gouskos]

- Jet = unordered set of particles
- Particle cloud (permutation invariant)
- Translational symmetry
- K-nearest neighbours define local patch $x'_i = \bigoplus_{i=1}^k \phi_{\theta}(x_i, x_{i_i} - x_i)$ • indicates an aggregation function (max, **mean**, sum, ...) • ϕ_{θ} is a 3 layer MLP
- Dynamically update edges for each layer
- Hyperparameter:
 - *#* neighbors, latent dim, dropout, batchnorm, learning rate,

TreeNiN ResNeXt 10^{4} PFN CNN Variable NSub(8) ____ $\Delta \eta$ LBN _ $\Delta \phi$ NSub(6) Background rejection $\frac{1}{\epsilon_B}$ 10⁵ P-CNN $\log p_T$ LoLa $\log E$ EFN ____ $\log \frac{p_T}{p_T(\text{jet})}$ nsub+m $\log \frac{1}{E(\text{jet})}$ EFP --- TopoDNN ΔR —-- LDA \boldsymbol{q} isElectron isMuon isChargedHadron isNeutralHadron 10^{1} isPhoton 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Signal efficiency ε_S

ParticleNet

Lorentz Net 2201.08187, S. Gong et al.

Combination of graph network and physics knowledge

Lorentz Net encodes Lorentz equivariance

$$x_i^{l+1} = x_i^l + c \sum_{j \in [N]} \phi_x(m_{ij}^l) \cdot x_j^l$$

$$m_{ij}^l = \phi_e\left(h_i^l, h_j^l, \psi(\|x_i^l - x_j^l\|^2), \psi(\langle x_i^l, x_j^l \rangle)\right)$$

 x^0 are the 4-momenta h^0 embedds charge, PID, etc. $\langle \cdot, \cdot \rangle$ Minkowski product $|\psi(\cdot) = \operatorname{sgn}(\cdot) \log(|\cdot|+1)|$ $|\phi_x|$ are neural networks

Top tagging dataset

Training	Model	Accuracy	AUC	$1/\varepsilon_B$	$1/\varepsilon_B$
Fraction	DoutioloNot	0.012	0.0697	$(c_S - 0.0)$	$(\varepsilon S - 0$
0.5%	Particienet	0.913	0.9087	$\begin{array}{c} 11 \pm 4 \\ 1 \pm 2 \pm 4 \end{array}$	$199 \pm$
	LorentzNet	0.929	0.9793	176 ± 14	$562\pm$
1%	ParticleNet	0.919	0.9734	103 ± 5	287 ± 1
	LorentzNet	0.932	0.9812	209 ± 5	$697 \pm$
5%	ParticleNet	0.931	0.9807	195 ± 4	609 ± 3
570	LorentzNet	0.937	0.9839	293 ± 12	$ $ 1108 \pm

 \rightarrow Physics layers enable better performance for smaller datasets

What about uncertainties?

Uncertainties vs methods

Uncertainties from neural networks

Limited training data Insufficient network complexity Dependence on initialization Stochastic training process

Unknown dependence on nuisance parameters

Calibration with toys

Known dependence on nuisance parameters

Condition on nuisance parameters

Discriminator to quantize deviations

Ensemble methods (expensive)

Bayesian networks

Limitations of a standard network

Example

 $gg \rightarrow \gamma \gamma g(g) \otimes LO$

90k training amplitudes 870k test amplitudes

Standard approach

Training data

T = (phase space points x, Amplitudes A'(x))

Loss

$$\mathscr{L} = (A'(x) - NN(x))^2$$

PROBLEM: For limited data there is **no unique solution**

 \rightarrow Need better formulation of the problem

 \rightarrow Find p(A | x, T) (from now on x is implicit)

Capturing probabilities with Bayesian networks

$$p(A) = \int dw \ p(A \mid w) p(w \mid T) \approx \int dw \ p(A \mid w) q(w)$$

Bayesian network

Building the loss function

Approximate q(w) by minimizing KL divergence

 $\mathscr{L}_{BNN} = \mathrm{KL}[q(w), p(w \mid T)]$ $= \left[dw \ q(w) \ \log \frac{q(w)}{p(w \mid T)} \right]$ $= \int dw \ q(w) \ \log \frac{q(w)p(T)}{p(w)p(T|w)}$ $= \operatorname{KL}[q(w), p(w)] - \int dw \ q(w) \ \log p(T|w)$ 2 Gaussian prior Gaussian uncertainty $\frac{\sigma_q^2 - \sigma_p^2 + (\mu_q - \mu_p)^2}{2\gamma} + \log \frac{\sigma_p}{\sigma_q}$ $\frac{\left|\bar{A}_{j}(\omega) - A_{j}^{(\text{truth})}\right|^{2}}{2\sigma_{\text{model},j}(\omega)^{2}} + \log\sigma_{\text{model},j}(\omega)$

Results - out of the box

+ Deviations at 1 percent level

Performance worse for rare points with large amplitudes (collinear)

Roughly Gaussian but enhanced tails

Enforce training on samples with $\Delta A > 2\sigma$ \rightarrow include them 5 times in each epoch \rightarrow Repeat 4 times

No change in performance

Loss boosting

Tails reproduced for training data Improvement for test data

Performance boosting

Enforce training on 200 samples with largest uncertainty σ_{tot} \rightarrow include them +3 times in each epoch \rightarrow Repeat 20 times

largest 100% A_{NN} 140 $gg \rightarrow \gamma \gamma g$ largest 1% A_{NN} 120 process-boosted largest 0.1% A_{NN} BNN training normalized 8 ______8 40 20 0 -0.04-0.020.02 0.04 0.00 $\Delta^{(train)}$ + overflow bin

Significant improvement in performance

- Bin independent
- ☐ Statistically well defined

Unfolding

Flow based unfolding methods

cINN unfolding High-dimensional. Bin independent. Robust.

Given a reconstructed event: What is the probability distribution at particle level?

 $\mathcal{L} = \log p(\theta | x, reco)$ $= \log p(z \mid \theta, reco) + \log J_{NN} + p(\theta)$

Unfolding

Inverting inclusive distributions

$pp > WZ > q\bar{q}l^+l^- + ISR \rightarrow 2/3/4$ jet events

Evaluate exclusive 2/3/4 jet events

Migh-dimensional

M. Bellagente et al. [2006.06685]

M Bin-independent

☐ Statistically well defined ?

Event-wise unfolding

No deterministic mapping! Check calibration of probability density for individual event unfolding

Migh-dimensional

M. Bellagente et al. [2006.06685]

M Bin-independent

Statistically well defined

Conditional iterative unfolding Current work in progress

Detector Level

Particle Level

Conditional iterative unfolding Current work in progress

Detector Level

Particle Level

Example: $Z\gamma\gamma + EFT$

Summary

Graph networks

- ~ Particularly suitable for unordered sets of objects
- Various applications from top tagging to track reconstruction
- Including physics based layers makes networks more efficient!

Uncertainties

Same validation as for other techniques (closure tests, toys, etc.)

Unfolding

~ ML enables new analysis methods for high-dim. data Unfolding with generative and reweighting methods MEM and many more

~ Additional tools to evaluate stability and uncertainties (Bayesian networks, ensembles,..)