Radiative decays from LHCb to Belle II

Pere Gironella Gironell

January 2024, DRS Seminar

Outline

1. Framework: Radiative b-decays

2. Angular analysis of $\Lambda_{\rm b} \rightarrow \Lambda_{\gamma}$ at LHCb

3. TDCPV analysis of $B^0 \rightarrow K_s \pi^+ \pi^- \gamma$ at Belle

4. Conclusions

Outline

1. Framework: Radiative b-decays

2. Angular analysis of $\Lambda_{\rm b} \rightarrow \Lambda_{\gamma}$ at LHCb

3. TDCPV analysis of $B^0 \rightarrow K_s \pi^+ \pi^- \gamma$ at Belle

4. Conclusions

Radiative b-decays are Flavor Changing Neutral Currents (FCNC), only allowed at loop level in the Standard Model.

Radiative b-decays are Flavor Changing Neutral Currents (FCNC), only allowed at loop level in the Standard Model.

- Transitions highly suppressed by the SM.
 - GIM mechanism
 - CKM Hierarchy

Radiative b-decays are Flavor Changing Neutral Currents (FCNC), only allowed at loop level in the Standard Model.

- Transitions highly suppressed by the SM.
- Observables very sensitive to beyond SM physics.
 - Branching ratios
 - **CP asymmetries**
 - Photon polarization

Radiative b-decays are Flavor Changing Neutral Currents (FCNC), only allowed at loop level in the Standard Model.

- Transitions highly suppressed by the SM.
- Observables very sensitive to beyond SM physics.
- Probe NP at higher energy scales.

Radiative b-decays are Flavor Changing Neutral Currents (FCNC), only allowed at loop level in the Standard Model.

But, why are they interesting?

- Transitions highly suppressed by the SM.
- Observables very sensitive to beyond SM physics.
- Probe NP at higher energy scales.

Test the SM through precision measurements.

These transitions can be described by effective field theory using the operation product expansion.

$$\mathcal{H}_{eff} \sim V_{CKM} \sum_{i} \mathcal{C}_i \mathcal{O}_i$$

These transitions can be described by effective field theory using the operation product expansion.

At leading order:

$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb}^* V_{ts} \left(\mathcal{C}_7 \mathcal{O}_7 + \mathcal{C}_7' \mathcal{O}_7' \right)$$

Electromagnetic operators: $\mathcal{O}_7, \mathcal{O}_7'$ (long-distance)

Wilson coefficients: C_7 , C_7' (short-distance)

These transitions can be described by effective field theory using the operation product expansion.

At leading order: $\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb}^* V_{ts} \left(\overline{\mathcal{C}_7 \mathcal{O}_7} + \overline{\mathcal{C}_7' \mathcal{O}_7'} \right)$

Electromagnetic operators: $\mathcal{O}_7, \mathcal{O}_7'$ (long-distance)

Wilson coefficients: C_7 , C_7' (short-distance)

These transitions can be described by effective field theory using the operation product expansion.

At leading order: $\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb}^* V_{ts} \left(\overline{\mathcal{C}_7 \mathcal{O}_7} + \overline{\mathcal{C}_7' \mathcal{O}_7'} \right)$

In the SM the electroweak interaction only couples to left-handed quarks.

These transitions can be described by effective field theory using the operation product expansion.

At leading order:

$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb}^* V_{ts} \left(\mathcal{C}_7 \mathcal{O}_7 + \mathcal{C}_7^\prime \mathcal{O}_7^\prime \right)^2$$

In the SM the electroweak interaction only couples to left-handed quarks.

These transitions can be described by effective field theory using the operation product expansion.

At leading order:

$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb}^* V_{ts} \left(\mathcal{C}_7 \mathcal{O}_7 + \mathcal{C}_7^\prime \mathcal{O}_7^\prime \right)^{\mathbf{0}}$$

In the SM the electroweak interaction only couples to left-handed quarks.

New Physics models can enhance right-handed currents, making these transitions very sensitive.

Photon polarization

The SM has a clean prediction of the photon polarization:

$$\alpha_{\gamma} = \frac{N(\gamma_L) - N(\gamma_R)}{N(\gamma_L) + N(\gamma_R)} = \frac{1 - |r|^2}{1 + |r|^2} \approx 1 \qquad |r| = \frac{C_7'}{C_7} \sim 0$$

How to measure it?

- CP asymmetries
- Angular distribution:
 - Hard in b-meson decays.
 - Baryonic decays have cleaner access.

Photon polarization

The SM has a clean prediction of the photon polarization:

$$\alpha_{\gamma} = \frac{N(\gamma_L) - N(\gamma_R)}{N(\gamma_L) + N(\gamma_R)} = \frac{1 - |r|^2}{1 + |r|^2} \approx 1 \qquad |r| = \frac{C_7'}{C_7} \sim 0$$

How to measure it?

- CP asymmetries
- Angular distribution:
 - Hard in b-meson decays.
 - Baryonic decays have cleaner access.

Measurement of the photon polarization in $\Lambda_{b} \rightarrow \Lambda_{\gamma}$ (LHCb)

1. Framework: Radiative b-decays

2. Angular analysis of $\Lambda_{b} \rightarrow \Lambda \gamma$ at LHCb

3. TDCPV analysis of $B^0 \rightarrow K_s \pi^+ \pi^- \gamma$ at Belle

4. Conclusions

The LHCb experiment

Single-arm forward spectrometer at LHC.

• bb cross-section: ~10⁵ nb

• Small efficiencies (acc., reco.)

- All kind of b-hadrons $B^0, B_s, \Lambda_b, \Xi_b$
- B-hadrons boosted

The LHCb experiment

Single-arm forward spectrometer at LHC.

- Momentum resolution
 - \circ ~ 0.4 0.6% at 5-100 GeV.

• Kaon ID eff: 95% \circ 5% $\pi \rightarrow$ K miss-ID.

• E resolution for photons: \circ 1% + 10%/ $\sqrt{E(GeV)}$

The $\Lambda_{\mu} \rightarrow \Lambda \gamma$ decay

Cannot be measured in B-factories (BaBar/Belle).

Currently only LHC has access to this kind of decays.

Observation by the LHCb experiment using 2016 data. [Phys. Rev. Lett. 123, 031801] $\mathcal{B}(\Lambda_b \to \Lambda \gamma) = (7.1 \pm 1.7) \times 10^{-6}$

Exploits the weak decay of the Λ .

The $\Lambda_{\rm b} \rightarrow \Lambda \gamma$ decay

The $\Lambda_{\rm b} \rightarrow \Lambda \gamma$ decay

• Λ is long lived.

The $\Lambda_{h} \rightarrow \Lambda \gamma$ decay

• A is long lived.

• No photon direction in LHCb.

The $\Lambda_{\rm h} \rightarrow \Lambda_{\gamma}$ decay

• A is long lived.

• No photon direction in LHCb.

• No $\Lambda_{\rm b}$ vertex (SV).

Both Λ , γ leave no hits in tracking detectors.

But, has direct access to α_{γ} via angular distribution

But, has direct access to α_{γ} via angular distribution

$$\frac{d\Gamma}{d(\cos\theta_p,\cos\theta_\Lambda)} \propto 1 - \alpha_\Lambda P_{\Lambda_b} \cos\theta_p \cos\theta_\Lambda \\ - \alpha_\gamma \left(\alpha_\Lambda \cos\theta_p - P_{\Lambda_b} \cos\theta_\Lambda\right)$$

Integrating over the angles:

$$\frac{d\Gamma}{d(\cos\theta_{\Lambda})} \propto 1 - \alpha_{\gamma} P_{\Lambda_b} \cos\theta_{\Lambda}$$
$$\frac{d\Gamma}{d(\cos\theta_p)} \propto 1 - \alpha_{\gamma} \alpha_{\Lambda} \cos\theta_p$$

But, has direct access to α_{v} via angular distribution

 $\frac{d\Gamma}{d(\cos\theta_p,\cos\theta_\Lambda)} \propto 1 - \alpha_\Lambda P_{\Lambda_b} \cos\theta_p \cos\theta_\Lambda \\ -\alpha_\gamma \left(\alpha_\Lambda \cos\theta_p - P_{\Lambda_b} \cos\theta_\Lambda\right) \underbrace{\qquad}_{\pi^-}$

Integrating over the angles:

$$\frac{d\Gamma}{d(\cos\theta_{\Lambda})} \propto 1 - \alpha_{\gamma} P_{\Lambda_b}^{0} \cos\theta_{\Lambda}$$
$$\frac{d\Gamma}{d(\cos\theta_p)} \propto 1 - \alpha_{\gamma} \alpha_{\Lambda} \cos\theta_p$$

But, has direct access to $\alpha_{_{\gamma}}$ via angular distribution

$$\frac{d\Gamma}{d(\cos\theta_p,\cos\theta_\Lambda)} \propto 1 - \alpha_\Lambda P_{\Lambda_b}\cos\theta_p\cos\theta_\Lambda \\ -\alpha_\gamma \left(\alpha_\Lambda\cos\theta_p - P_{\Lambda_b}\cos\theta_\Lambda\right) \\ \text{Integrating over the angles:} \\ \frac{d\Gamma}{d(\cos\theta_\Lambda)} \propto 1 - \alpha_\gamma P_{\Lambda_b}^{\uparrow}\cos\theta_\Lambda \\ \frac{d\Gamma}{d(\cos\theta_p)} \propto 1 - \alpha_\gamma \alpha_\Lambda\cos\theta_p \\ \text{Integrating over the angles:} \\ \frac{d\Gamma}{d(\cos\theta_p)} \propto 1 - \alpha_\gamma \alpha_\Lambda\cos\theta_p \\ \text{Integrating over the angles:} \\ \frac{d\Gamma}{d(\cos\theta_p)} \propto 1 - \alpha_\gamma \alpha_\Lambda\cos\theta_p \\ \text{Integrating over the angles:} \\ \frac{d\Gamma}{d(\cos\theta_p)} \propto 1 - \alpha_\gamma \alpha_\Lambda\cos\theta_p \\ \text{Integrating over the angles:} \\ \frac{d\Gamma}{d(\cos\theta_p)} \propto 1 - \alpha_\gamma \alpha_\Lambda\cos\theta_p \\ \text{Integrating over the angles:} \\ \frac{d\Gamma}{d(\cos\theta_p)} \propto 1 - \alpha_\gamma \alpha_\Lambda\cos\theta_p \\ \text{Integrating over the angles:} \\ \frac{d\Gamma}{d(\cos\theta_p)} \propto 1 - \alpha_\gamma \alpha_\Lambda\cos\theta_p \\ \text{Integrating over the angles:} \\ \frac{d\Gamma}{d(\cos\theta_p)} \propto 1 - \alpha_\gamma \alpha_\Lambda\cos\theta_p \\ \text{Integrating over the angles:} \\ \frac{d\Gamma}{d(\cos\theta_p)} \propto 1 - \alpha_\gamma \alpha_\Lambda\cos\theta_p \\ \text{Integrating over the angles:} \\ \frac{d\Gamma}{d(\cos\theta_p)} \propto 1 - \alpha_\gamma \alpha_\Lambda\cos\theta_p \\ \text{Integrating over the angles:} \\ \frac{d\Gamma}{d(\cos\theta_p)} \propto 1 - \alpha_\gamma \alpha_\Lambda\cos\theta_p \\ \text{Integrating over the angles:} \\ \frac{d\Gamma}{d(\cos\theta_p)} \propto 1 - \alpha_\gamma \alpha_\Lambda\cos\theta_p \\ \text{Integrating over the angles:} \\ \frac{d\Gamma}{d(\cos\theta_p)} \propto 1 - \alpha_\gamma \alpha_\Lambda\cos\theta_p \\ \text{Integrating over the angles:} \\ \frac{d\Gamma}{d(\cos\theta_p)} \propto 1 - \alpha_\gamma \alpha_\Lambda\cos\theta_p \\ \text{Integrating over the angles:} \\ \frac{d\Gamma}{d(\cos\theta_p)} \propto 1 - \alpha_\gamma \alpha_\Lambda\cos\theta_p \\ \text{Integrating over the angles:} \\ \frac{d\Gamma}{d(\cos\theta_p)} \propto 1 - \alpha_\gamma \alpha_\Lambda\cos\theta_p \\ \text{Integrating over the angles:} \\ \frac{d\Gamma}{d(\cos\theta_p)} \propto 1 - \alpha_\gamma \alpha_\Lambda\cos\theta_p \\ \text{Integrating over the angles:} \\ \frac{d\Gamma}{d(\cos\theta_p)} \propto 1 - \alpha_\gamma \alpha_\Lambda\cos\theta_p \\ \text{Integrating over the angles:} \\ \frac{d\Gamma}{d(\cos\theta_p)} \propto 1 - \alpha_\gamma \alpha_\Lambda\cos\theta_p \\ \text{Integrating over the angles:} \\ \frac{d\Gamma}{d(\cos\theta_p)} \propto 1 - \alpha_\gamma \alpha_\Lambda\cos\theta_p \\ \text{Integrating over the angles:} \\ \frac{d\Gamma}{d(\cos\theta_p)} \propto 1 - \alpha_\gamma \alpha_\Lambda\cos\theta_p \\ \text{Integrating over the angles:} \\ \frac{d\Gamma}{d(\cos\theta_p)} \propto 1 - \alpha_\gamma \alpha_\Lambda\cos\theta_p \\ \text{Integrating over the angles:} \\ \frac{d\Gamma}{d(\cos\theta_p)} \propto 1 - \alpha_\gamma \alpha_\Lambda\cos\theta_p \\ \frac{d\Gamma}{d(\cos\theta_p)} \qquad \frac{d\Gamma}{d(\cos\theta_p)} \\ \frac{d\Gamma}{d(\cos\theta_p)} \qquad \frac{d\Gamma}{d(\cos\theta$$

• Reconstruct and select events

• Extract signal and background yields

- Effects on θ_p : acceptance and resolution
- Extract α_{γ} : fit $\cos \theta_{p}$
- Interpretation of the results

• Reconstruct and select events

• Extract signal and background yields

- Effects on θ_{p} : acceptance and resolution
- Extract α_{γ} : fit $\cos \theta_{p}$
- Interpretation of the results

Run 2 data 2016, 2017, 2018

How do we reconstruct such a tricky decay?

- a) Λ is long lived.
- b) No photon direction

c) No Λ , γ tracks

Run 2 data 2016, 2017, 2018

How do we reconstruct such a tricky decay?

- A is long lived.
 Only use Λ decaying on the VELO (long tracks)
- b) No photon direction

c) No Λ , γ tracks

How do we reconstruct such a tricky decay?

- A is long lived.
 Only use Λ decaying on the VELO (long tracks)
- b) No photon direction Photons reconstructed as calorimeter clusters pointing at the PV.
- c) No Λ , γ tracks

Run 2 data

2016, 2017, 2018

How do we reconstruct such a tricky decay?

- A is long lived.
 Only use Λ decaying on the VELO (long tracks)
- b) No photon direction Photons reconstructed as calorimeter clusters pointing at the PV.
- c) No Λ , γ tracks

Do not reconstruct SV, direct sum of Λ and γ momentum

Online selection

Online selection:

1) Large transverse energy photon

2) A charged track with high transverse momenta and large impact parameter

Run 2 data 2016, 2017, 2018

3) Specific selection

Offline selection

Goal: Further separate signal from background candidates.

Based on simulated signal events.

- Loose selection.
- Multivariate Analysis: Boosted Decision Tree (BDT).

But, need to make sure **simulation** and **data** are in **agreement**.

• Kinematics of mother particles are usually mismodeled ($\Lambda_{\rm b}$)

Correct for these discrepancies using control channels (Λ_{h} -> pK J/ ψ)
Multivariate classifier: BDT

Disentangle signal from combinatorial background.

- Simulation as signal.
- Data sidebands as background.
- Use kinematic and geometric variables
- 2-fold technique and tests for biases

How do we define a the best output?

F.o.M based on pseudo-experiments maximizing the sensitivity to the photon polarization (α_{γ})

Multivariate classifier: BDT

Disentangle signal from combinatorial background.

- Simulation as signal.
- Data sidebands as background.
- Use kinematic and geometric variables
- 2-fold technique and tests for biases

How do we define a the best output?

F.o.M based on pseudo-experiments maxim sensitivity to the photon polarization (α_{γ})

- Reconstruct and select events.
- Extract signal and background yields
- Effects on θ_p : acceptance and resolution.
- Extract α_{γ} : fit $\cos \theta_{p}$.
- Interpretation of the results.

Extract yields using an invariant mass fit to $\Lambda_{\rm b}$ in data.

Extract yields using an invariant mass fit to $\Lambda_{\rm b}$ in data.

- Signal
 - → Simulated events.
 - → Double sided Crystal Ball

Extract yields using an invariant mass fit to $\Lambda_{\rm b}$ in data.

- Signal
 - → Simulated events.
 - → Double sided Crystal Ball
- Combinatorial
 - → Data from side bands.

Extract yields using a invariant mass fit to Λ_{b} in data.

- Partially reconstructed background
 - → $\Lambda_b \rightarrow \Lambda \eta \ (\eta \rightarrow \gamma \gamma)$
 - → Simulated events
 - → Convolution: Argus x Gaussian

Invariant mass fit

Invariant mass fit

• Reconstruct and select events.

• Extract signal and background yields

- Effects on θ_p : acceptance.
- Extract α_{γ} : fit $\cos \theta_{p}$.
- Interpretation of the results.

Angle θ_{p} effects: Resolution

What is the effect of the detector on the θ_{p} distribution?

Angle θ_{p} effects: Resolution

What is the effect of the detector on the θ_{p} distribution?

Angle θ_{p} effects: Resolution

What is the effect of the detector on the θ_{p} distribution?

Angle θ_{p} effects: Acceptance

What is the effect of the selection on the θ_{p} distribution?

Angle θ_{p} effects: Acceptance

What is the effect of the selection on the θ_{p} distribution?

Measured θ_p distribution after selection divided by theoretical θ_p distribution. Extracted from simulation samples.

Model: 4th order polynomial

Angular pseudo-experiments: Important effect

Agreement between simulation and data cross-checked using $\Lambda_b^0 \rightarrow \Lambda J/\psi$

Angle θ_{p} effects: Acceptance

What is the effect of the selection on the θ_p distribution?

Measured θ_p distribution after selection divided by theoretical θ_p distribution.

Extracted from simulation samples.

• Reconstruct and select events.

• Extract signal and background yields

- Effects on θ_p : acceptance.
- Extract α_{γ} : fit $\cos \theta_{p}$.
- Interpretation of the results.

$$\Gamma(\alpha_{\gamma};\theta_{p}) = \frac{S}{S+B} \left[\Gamma_{\text{sig}}(\alpha_{\gamma};\theta_{p}) \cdot A(\theta_{p}) \right] + \frac{B}{S+B} \left[\Gamma_{\text{bkg}}(\theta_{p}) \right]$$

$$\Gamma(\alpha_{\gamma}; \theta_{p}) = \frac{S}{S+B} \left[\Gamma_{\text{sig}}(\alpha_{\gamma}; \theta_{p}) \cdot A(\theta_{p}) \right] + \frac{B}{S+B} \left[\Gamma_{\text{bkg}}(\theta_{p}) \right]$$

Yields: S, B

$$\Gamma(\alpha_{\gamma};\theta_{p}) = \frac{S}{S+B} \left[\Gamma_{\text{sig}}(\alpha_{\gamma};\theta_{p}) \cdot A(\theta_{p}) \right] + \frac{B}{S+B} \left[\Gamma_{\text{bkg}}(\theta_{p}) \right]$$

Yields: S, B

Signal shape:
$$\frac{d\Gamma}{d(\cos \theta_p)} \propto 1 - \alpha_\gamma \alpha_\Lambda \cos \theta_p$$

$$\Gamma(\alpha_{\gamma}; \theta_{p}) = \frac{S}{S+B} \left[\Gamma_{\text{sig}}(\alpha_{\gamma}; \theta_{p}) \cdot A(\theta_{p}) \right] + \frac{B}{S+B} \left[\Gamma_{\text{bkg}}(\theta_{p}) \right]$$

Yields: S, B
Acceptance: $A(\theta_{p})$
Signal shape:
 $\frac{d\Gamma}{d(\cos \theta_{p})} \propto 1 - \alpha_{\gamma} \alpha_{\Lambda} \cos \theta_{p}$

$$\Gamma(\alpha_{\gamma}; \theta_{p}) = \frac{S}{S+B} \left[\Gamma_{\text{sig}}(\alpha_{\gamma}; \theta_{p}) \cdot A(\theta_{p}) \right] + \frac{B}{S+B} \left[\Gamma_{\text{bkg}}(\theta_{p}) \right]$$
Yields: S, B
Signal shape:
$$\frac{d\Gamma}{d(\cos \theta_{p})} \propto 1 - \alpha_{\gamma} \alpha_{\Lambda} \cos \theta_{p}$$
Missing

Angular fit: Background

Background shape from data:

- Low mass side band (LMSB)
- High mass side band (HMSB)

Model: 4th order polynomial.

$\Lambda_b^0 \to \Lambda \eta$ background candidates:

- No theory prediction.
- Very small contribution.
- Compatibility between HMSB and LMSB.

Angular fit: Background

Background shape from data:

- Low mass side band (LMSB)
- High mass side band (HMSB)

Model: 4th order polynomial.

- No theory prediction.
- Very small contribution.
- Compatibility between HMSB and LMSB.

Angular fit: Validation

Validate: Pseudo-experiments (20000)

Generate $\alpha_{\gamma} = 0, 0.5, 1$

Pull asymmetric behavior when $\alpha_{\gamma} \rightarrow 1$.

$$\frac{d\Gamma}{d(\cos\theta_p)} \propto 1 - \alpha_\gamma \alpha_\Lambda \cos\theta_p$$

Negative p.d.f at $\alpha_{\gamma} > \left| \frac{1}{\alpha_{\Lambda}} \right| \sim 1.326$

Validation with a cut-off.

Tagged measurement

Same price, a tagged measurement:

The charge of the proton tag the decay

Systematic uncertainties

Systematics are computed using pseudo-experiments.

Main sources:

- Acceptance and background shape
- Yield extraction
- α_{Λ} uncertainty

Systematics

Acceptance	MC limited size	0.040
	Model	0.005
	Kin. weights	0.037
Background	Data limited size	0.114
	Model	0.014
Yields		0.035
α_{Λ}		0.023
Total		0.134

Systematic uncertainties

Systematics are computed using pseudo-experiments.

Main sources:

- Acceptance and background shape
- Yield extraction
- α_{Λ} uncertainty

Main systematic from background size.

Dominated by the statistical uncertainty.

Systematics

Acceptance	MC limited size	0.040
	Model	0.005
	Kin. weights	0.037
Background	Data limited size	0.114
	Model	0.014
Yields		0.035
$lpha_{\Lambda}$		0.023
Total		0.134

Systematic uncertainties: Tagged

Systematics are computed using pseudo-experiments.

Main sources:

- Acceptance and background shape
- Yield extraction
- α_{Λ} uncertainty

Main systematic from background size.

Dominated by the statistical uncertainty.

Tagged sample, more of the same

Systematic source		α_{γ}^{-} (part)	α_{γ}^+ (anti)
Acceptance	MC limited size	0.038	0.047
	Model	0.023	0.024
Background	Data limited size	0.128	0.107
	Model	0.125	0.105
Yields		0.035	0.035
α_{Λ}		0.076	0.062
Total correlated		0.133	0.117
Total uncorrelated		0.152	0.129
Total		0.202	0.174

Results

Results: tagged

• Reconstruct and select events.

• Extract signal and background yields

- Effects on θ_p : acceptance.
- Extract α_{γ} : fit $\cos \theta_{p}$.
- Interpretation of the results.

Physical interpretation

Photon polarization is physically bounded between -1 and 1.

Need to translate the result of the fit to a physical measurement, use Feldman-Cousins technique.

Physical interpretation

Photon polarization is physically bounded between -1 and 1.

Need to translate the result of the fit to a physical measurement, use Feldman-Cousins technique.

Physical interpretation: tagged

Photon polarization is physically bounded between -1 and 1.

Need to translate the result of the fit to a physical measurement, use Feldman-Cousins technique.

Constraints

The Photon polarization places additional constraints to the Wilson coefficients

$$\alpha_{\gamma} = \frac{N(\gamma_L) - N(\gamma_R)}{N(\gamma_L) + N(\gamma_R)} = \frac{1 - |r|^2}{1 + |r|^2} \qquad |r| = \frac{C_7'}{C_7}$$

1. Framework: Radiative b-decays

2. Angular analysis of $\Lambda_{\rm b} \rightarrow \Lambda_{\gamma}$ at LHCb

3. TDCPV analysis of $B^0 \rightarrow K_s \pi^+ \pi^- \gamma$ at Belle

4. Conclusions

TDCP asymmetry is sensitive to the photon polarization.

→ Interference of the amplitudes of B decaying into a CP eigenstate emerging as a result of the B oscillation.

TDCP asymmetry is sensitive to the photon polarization.

→ Interference of the amplitudes of B decaying into a CP eigenstate emerging as a result of the B oscillation.

$$\mathcal{A}_{CP} = \frac{\Gamma\left(B_{tag=\overline{B}}(\Delta t) \to f_{CP}\right) - \Gamma\left(B_{tag=B}(\Delta t) \to f_{CP}\right)}{\Gamma\left(B_{tag=\overline{B}}(\Delta t) \to f_{CP}\right) + \Gamma\left(B_{tag=B}(\Delta t) \to f_{CP}\right)}$$
$$= S \cdot \sin\left(\Delta m_d \Delta t\right) - C \cdot \cos\left(\Delta m_d \Delta t\right)$$

TDCP asymmetry is sensitive to the photon polarization.

→ Interference of the amplitudes of B decaying into a CP eigenstate emerging as a result of the B oscillation.

$$\mathcal{A}_{CP} = \frac{\Gamma\left(B_{tag=\overline{B}}(\Delta t) \to f_{CP}\right) - \Gamma\left(B_{tag=B}(\Delta t) \to f_{CP}\right)}{\Gamma\left(B_{tag=\overline{B}}(\Delta t) \to f_{CP}\right) + \Gamma\left(B_{tag=B}(\Delta t) \to f_{CP}\right)}$$
$$= S \cdot \sin\left(\Delta m_d \Delta t\right) - C \cdot \cos\left(\Delta m_d \Delta t\right)$$

Requires precise determination of the B flavor.

TDCP asymmetry is sensitive to the photon polarization.

→ Interference of the amplitudes of B decaying into a CP eigenstate emerging as a result of the B oscillation.

$$\mathcal{A}_{CP} = \frac{\Gamma\left(B_{tag=\overline{B}}(\Delta t) \to f_{CP}\right) - \Gamma\left(B_{tag=B}(\Delta t) \to f_{CP}\right)}{\Gamma\left(B_{tag=\overline{B}}(\Delta t) \to f_{CP}\right) + \Gamma\left(B_{tag=B}(\Delta t) \to f_{CP}\right)}$$
$$= S \cdot \sin\left(\Delta m_d \Delta t\right) - C \cdot \cos\left(\Delta m_d \Delta t\right)$$

Requires precise determination of the B flavor.

TDCPV analysis of $B^0 \rightarrow K_s \rho \gamma \rightarrow K_s \pi^+ \pi^- \gamma$ (Belle & Belle II)

Constraints on Wilson coefficient: C₇

Split the m(π K_s) phase-space to measure S-parameter and new constraints on the Wilson coefficients []HEP 09 (2019) 0341.

Constraints on Wilson coefficient: C₇

Split the m(π K_s) phase-space to measure S-parameter and new constraints on the Wilson coefficients []HEP 09 (2019) 0341.

Two new observables:
$$S^+ = S^I + S^I$$

 $S^- = S^I - S^{\overline{I}}$

Constraints on Wilson coefficient: C₇

Split the m(π K_s) phase-space to measure S-parameter and new constraints on the Wilson coefficients []HEP 09 (2019) 0341.

SuperKEKB and Belle II

SuperKEKB: e⁻-e⁺ collider - Y(4S)

- World Record peak instantaneous luminosity. $4.7 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
- Recorded 427fb⁻¹ (BaBar)
- New run started this week after LS2.

The Belle II detector

General purpose spectrometer:

- bb cross-section: ~1 nb
- Hermetic, clean collisions
- Mostly B, B⁺
 Inclusive analysis, tau decays, ...
- Excellent tagging power
- Good reconstruction of neutrals

Event Reconstruction

Flavor tagger

B flavor is estimated BDT + Graph Neuronal Network (GNN) based on several flavor estimators (p_t, N leptons, etc ...)

Flavor tagger output parameters

- Tag-B flavor: q=±1
- Confidence factor: r= 1-2w
- Mistag fraction: w

Overall 37% effective tagging power

Reconstruct the CP side first then the tag side with the Rest of the Event

Reconstruct the CP side first then the tag side with the Rest of the Event

Pions:

- Small requirements on the p_r and PID.
- Prompt pions used to reconstruct the B vertex.
- Mass compatible with a $\rho(770)$.
- MVA: K_s goodness.

Reconstruct the CP side first then the tag side with the Rest of the Event

Pions:

- Small requirements on the p_r and PID.
- Prompt pions used to reconstruct the B vertex.
- Mass compatible with a $\rho(770)$.
- MVA: K_s goodness.

Photon:

- Energy requirement 1.4 4 GeV
- π^0 PID rejection.

Reconstruct the CP side first then the tag side with the Rest of the Event

Pions:

- Small requirements on the p_t and PID.
- Prompt pions used to reconstruct the B vertex.
- Mass compatible with a $\rho(770)$.
- MVA: K_s goodness.

Photon:

- Energy requirement 1.4 4 GeV
- π^0 PID rejection.

Continuum is the dominant background. MVA trained using event-shape.

3-dimensions:

•
$$M_{bc} = \sqrt{\frac{E_{beam}}{2}^2 - p_B^{*2}}$$

•
$$\Delta E = E_{\rm B}^* - \sqrt{s}/2$$

• ΔT (S,C)

Simultaneous:

 Two flavor tagging bins

3-dimensions:

- $M_{bc} = \sqrt{\frac{E_{beam}}{2}^2 p_B^{*2}}$
- $\Delta E = E_{\rm B}^* \sqrt{s}/2$
- ΔT (S,C)

Simultaneous:

• Two flavor tagging bins

4 components:

- 1. Signal
- 2. Self cross-feed
- 3. Continuum
- 4. Combinatorial B physical background

Models for M_{bc} and ΔE are extracted from simulated samples.

$$\mathcal{T}(\Delta t, q = \pm 1) = \frac{e^{-|\Delta t|/\tau_B}}{2\tau_B} \left(1 - q\Delta w + q\mu(1 - 2w) + \left[q(1 - 2w) + \mu(1 - q\Delta w)\right] \left[S\sin(\Delta m_d \Delta t) - C\cos(\Delta m_d \Delta t)\right] \otimes \mathcal{R}_{\Delta t}$$

$$\mathcal{T}(\Delta t, q = \pm 1) = \frac{e^{-|\Delta t|/\tau_B}}{2\tau_B} \left(1 - q\Delta w + q\mu(1 - 2w) \right) + \left[q(1 - 2w) + \mu(1 - q\Delta w) \right] \left[S\sin(\Delta m_d \Delta t) - C\cos(\Delta m_d \Delta t) \right] \otimes \mathcal{R}_{\Delta t}$$

Flavor tagger parameters: q, μ , w, Δ w

$$\mathcal{T}(\Delta t, q = \pm 1) = \frac{e^{-|\Delta t|/\tau_B}}{2\tau_B} (1 - q\Delta w + q\mu(1 - 2w) + [q(1 - 2w) + \mu(1 - q\Delta w)] [S\sin(\Delta m_d \Delta t) - C\cos(\Delta m_d \Delta t)] \otimes \mathcal{R}_{\Delta t}$$

Flavor tagger parameters: q, μ , w, Δ w

CP parameters: S, C

$$\mathcal{T}(\Delta t, q = \pm 1) = \frac{e^{-|\Delta t|/\tau_B}}{2\tau_B} \left(1 - q\Delta w + q\mu(1 - 2w) + \left[q(1 - 2w) + \mu(1 - q\Delta w)\right] \left[S\sin(\Delta m_d \Delta t) - C\cos(\Delta m_d \Delta t)\right] \otimes \mathcal{R}_{\Delta t}$$

Flavor tagger parameters: q, μ , w, Δ w

CP parameters: S, C

Resolution: Finite precision of the detector in measuring the vertex position

$$\mathcal{T}(\Delta t, q = \pm 1) = \frac{e^{-|\Delta t|/\tau_B}}{2\tau_B} \left(1 - q\Delta w + q\mu(1 - 2w) + \left[q(1 - 2w) + \mu(1 - q\Delta w)\right] \left[S\sin(\Delta m_d \Delta t) - C\cos(\Delta m_d \Delta t)\right] \otimes \mathcal{R}_{\Delta t}$$

Flavor tagger parameters: q, μ , w, Δ w

CP parameters: S, C

Resolution: Finite precision of the detector in measuring the vertex position

 $\begin{aligned} \mathcal{R}(\delta\Delta t;\sigma) &= (1 - f_{\rm OL})\mathcal{R}_{\rm core}(\delta\Delta t;\sigma) + f_{\rm OL}\mathcal{R}_{\rm OL}(\delta\Delta t;\sigma) \\ \mathcal{R}_{\rm core}(\delta\Delta t;\sigma) &= (1 - f_{\rm tail}) \cdot G(\delta\Delta t;\mu_{\rm main}\cdot\sigma,s_{\rm main}\cdot\sigma) \\ &+ (1 - f_{\rm exp}) \cdot f_{\rm tail} \cdot G(\delta\Delta t;\mu_{\rm tail}\cdot\sigma,s_{\rm tail}\cdot\sigma) \\ &+ f_{\rm tail}\cdot f_{\rm exp} \cdot G(\delta\Delta t;\mu_{\rm tail}\cdot\sigma,s_{\rm tail}\cdot\sigma) \\ &\otimes \left((1 - f_{\rm R})\exp_{-}(\delta\Delta t/c\cdot\sigma) + f_{\rm R}\exp_{+}(-\delta\Delta t/c\cdot\sigma) \right) \end{aligned}$

Validation

Fit strategy is validated using pseudo-experiments

Validation

Fit strategy is validated using pseudo-experiments

Tests: B lifetime and S-linearity

1. Framework: Radiative b-decays

2. Angular analysis of $\Lambda_{\rm b} \rightarrow \Lambda_{\gamma}$ at LHCb

3. TDCPV analysis of $B^0 \rightarrow K_s \pi^+ \pi^- \gamma$ at Belle

4. Conclusions

Conclusions

- → Radiative b-decays are very powerful to perform precision measurements of the SM.
- → LHCb and Belle II are complementary and able to tackle different approaches to the measurement of C_7 , C_7 '.
 - Radiative b-baryon decays are complementary to b-meson measurements.
 - New constraints to C_7 , C_7' using TDCPV asymmetry.

