

Antoine Beauchêne - November 14th, 2023

Third Step: Likelihood

LLR meeting

Steps

- 1. PDFs creation
 - a. Background PDFs
 - b. PDF for each DSNB model
- 2. Likelihood calculation \rightarrow In progress
- 3. Systematics calculation \rightarrow In progress
- 4. Fit \rightarrow In progress
- 5. Phase combination \rightarrow In progress

Spectral Analysis

INSTITUT POLYTECHNIQUE DE PARIS

Steps

- 1. PDFs creation
 - a. Background PDFs
 - b. PDF for each DSNB model
- 2. Likelihood calculation \rightarrow In progress
- 3. Systematics calculation \rightarrow In progress
- 4. Fit \rightarrow In progress
- 5. Phase combination \rightarrow In progress

Spectral Analysis

INSTITUT POLYTECHNIQUE DE PARIS

Flux & Event rate of a DSNB model

- <u>For example</u>: Model of S. Horiuchi (2009)
- 1. Extract the flux of the considered model
- 2. Compute the event rate:

$$\frac{\mathrm{d}N_{\mathrm{events}}(E_{\nu})}{\mathrm{d}E_{\nu}} = N_{\mathrm{targets}} \,\Delta t_{1\,\mathrm{year}} \,\Phi(E_{\nu}) \,\sigma_{\mathrm{IBD}}(E_{\nu})$$

G. Ricciardi, N. Vignaroli and F. Vissani [arXiv:2206.05567v2 [hep-ph]]

Reconstructed flux

- We have the response matrix $R_{E_{true} \to E_{rec}}$ (to convert E_{true} into E_{rec})

Spectral Analysis

CITS IN2P

POLYTECHNIQUE

B-spline interpolation & cuts

• Method to create smooth curves from control points using special functions called **B-splines**

Spectral Analysis

CINC IN 2P

POLYTECHNIQUE

Normalize PDFs

• Energy threshold (17.5 MeV for SK-II, 16 MeV otherwise) + *l*1 normalization

Antoine Beauchêne

November 14th, 2023

Steps

- 1. PDFs creation
 - a. Background PDFs
 - b. PDF for each DSNB model
- 2. Likelihood calculation \rightarrow In progress
- 3. Systematics calculation \rightarrow In progress
- 4. Fit \rightarrow In progress
- 5. Phase combination \rightarrow In progress

Spectral Analysis

INSTITUT POLYTECHNIQUE DE PARIS

6

Likelihood without systematics

Simultaneously on the 6 regions

• We fit the number of observed events N_j that maximizes the following likelihood:

$$\mathscr{L}(\overrightarrow{E} | N_s, \overrightarrow{N}_b) = e^{-\sum_{j \in s+b} N_j} \prod_{i=1}^{N_{\text{data}}} \sum_{j \in s+b} N_j \text{PDF}_j(E^i | \theta_C^i, N_{\text{tagged } n}^i)$$

• Minimization of:

$$-2\ln\left(\mathscr{L}(\overrightarrow{E}|N_s,\overrightarrow{N}_b)\right) = 2\cdot\left(\sum_{j\in s+b}N_j - \sum_{i=1}^{N_{\text{data}}}\ln\left(\sum_{j\in s+b}N_j \text{PDF}_j(E^i|\theta_C^i, N_{\text{tagged }n}^i)\right)\right)$$

Antoine Beauchêne

November 14th, 2023

Minimization methods (tested with SK-VI)

Method	Duration (s)	$-2\ln(\mathscr{L})$	N _{DSNB}	$N_{\nu_e { m CC}}$	N _{Decay e} -	N _{NCQE}	$N_{\mu/\pi}$	N _{Spallation}
Nelder-Mead	36.46	636.82	11.37	17.84	28.07	13.84	3.43	4.45
Powell	21.68	636.82	11.32	17.86	28.08	13.84	3.43	4.46
CG	30.91	636.82	11.37	17.84	28.07	13.84	3.43	4.45
BFGS	13.85	636.82	11.37 ± 3.94	17.84 ± 2.33	28.07 ± 3.90	13.84 ± 2.91	3.43 ± 1.69	4.45 ± 1.6
Newton-CG	80.12	636.82	11.15	17.93	27.96	13.73	3.44	4.40
L-BFGS-B	6.54	636.82	11.37 ± 4.18	17.84 ± 5.43	28.07 ± 6.09	13.84 ± 1.35	3.43 ± 1.42	4.45 ± 1.7
TNC	44.03	636.82	11.44	17.86	27.89	13.74	3.46	4.45
COBYLA	22.55	636.82	11.37	17.84	28.07	13.84	3.43	4.45
SLSQP	11.08	636.82	11.37	17.84	28.07	13.84	3.43	4.45
trust-constr	40.33	636.82	11.37	17.84	28.07	13.84	3.43	4.45
dogleg	364.26	636.82	11.36	17.84	28.06	13.84	3.43	4.45
trust-ncg	28.53	636.82	11.36	17.84	28.06	13.84	3.43	4.45
trust-exact	364.98	636.82	11.36	17.84	28.06	13.84	3.43	4.45
trust-krylov	15.33	636.82	11.36	17.84	28.07	13.84	3.43	4.45

Antoine Beauchêne

Comparison (on SK-VI)

	Nelder-Mead	BFGS	L-BFGS-B			
Number of evaluations of the objective functions	629	238	119			
Number of iterations	398	32	15			
Number of evaluations of the Jacobian of the	None	34	17			
Sensitivity to initial conditions	Sensitive	Not sensitive	Not sensitive			
Errors	Not provided	Provided	Provided			
(Inverse Hessian matrix = covariance matrix)						

Antoine Beauchêne

November 14th, 2023

Comparison (on SK-VI)

Antoine Beauchêne

November 14th, 2023

Comparison with previous analysis (on SK-VI without systematics)

Analysis	Method	$-2\ln(\mathscr{L})$	N _{DSNB}	$N_{\nu_e { m CC}}$	N _{Decay e} -	N _{NCQE}	$N_{\mu/\pi}$	N _{Spallation}	$\sum N_j$
Old	Nelder-Mead	290.34	7.35	18.58	31.32	13.57	3.49	4.70	79.01
New	Nelder-Mead	636.82	11.37	17.84	28.07	13.84	3.43	4.45	79.00
New	BFGS	636.82	11.37 ± 3.94	17.84 ± 2.33	28.07 ± 3.90	13.84 ± 2.91	3.43 ± 1.69	4.45 ± 1.61	79.00 ± 7
New	L-BFGS-B	636.82	11.37 ± 4.18	17.84 ± 5.43	28.07 ± 6.09	13.84 ± 1.35	3.43 ± 1.42	4.45 ± 1.74	79.00 ± 9

7.35	18.58	31.32	13.57	3.49

Antoine Beauchêne

November 14th, 2023

SK-VI parameter estimations

11

Comparison with previous analysis (on SK-I, II, III, IV & VI without systematics)

Analysis	Method	Duration
Old	Nelder-Mead	13min 31.08s
New	Nelder-Mead	8min 40.08s
New	BFGS	7min 43.73s
New	L-BFGS-B	1min 50.88s

Antoine Beauchêne

November 14th, 2023

12

Results for every phase (without systematics)

SK phase	Method	$-2\ln(\mathscr{L})$	N _{DSNB}	$N_{\nu_e \mathrm{CC}}$	N _{Decay e⁻}	N _{NCQE}	$N_{\mu/\pi}$	N _{Spallation}	$\sum N_j$
	Nelder-Mead	23.24	0.00	85.63	147.11	47.15	62.56	0.54	343.00
Ι	BFGS	1440.82	-2.07 ± 5.82	70.94 ± 11.73	145.94 ± 4.68	48.37 ± 9.36	54.33 ± 3.31	1.48 ± 1.51	319.00 ± 17
	L-BFGS-B	1440.87	0.00 ± 6.80	71.12 ± 7.39	143.99 ± 10.62	48.25 ± 5.66	54.34 ± 3.04	1.30 ± 1.49	319.00 ± 16
	Nelder-Mead	300.39	0.00	43.92	76.44	19.72	42.17	1.75	184.00
II	BFGS	992.08	2.65 ± 2.98	33.09 ± 9.84	74.17 ± 10.88	21.04 ± 5.48	30.93 ± 6.33	2.11 ± 1.22	164.00 ± 17
	L-BFGS-B	992.08	2.65 ± 6.97	33.09 ± 5.97	74.17 ± 8.23	21.04 ± 3.70	30.93 ± 4.87	2.11 ± 1.58	164.00 ± 13
	Nelder-Mead	284.63	4.76	45.01	50.49	10.75	24.43	1.54	137.00
ш	BFGS	776.22	5.75 ± 7.29	25.86 ± 4.61	52.94 ± 18.47	11.78 ± 3.25	19.97 ± 4.13	1.70 ± 1.20	118.00 ± 21
	L-BFGS-B	776.22	5.75 ± 5.55	25.86 ± 3.63	52.93 ± 6.84	11.78 ± 2.63	19.97 ± 3.50	1.70 ± 1.01	118.00 ± 10
	Nelder-Mead	124.39	26.21	109.72	158.75	87.57	28.19	5.61	416.05
IV	BFGS	2032.83	11.54 ± 20.82	106.49 ± 2.47	173.21 ± 14.84	88.37 ± 6.90	28.49 ± 2.72	7.90 ± 2.55	416.00 ± 26
	L-BFGS-B	2032.83	11.54 ± 7.58	106.49 ± 9.24	173.20 ± 11.65	88.38 ± 7.74	28.49 ± 4.93	7.90 ± 3.08	416.01 ± 19
	Nelder-Mead	290.34	7.35	18.58	31.32	13.57	3.49	4.70	79.01
VI	BFGS	636.82	11.37 ± 3.94	17.84 ± 2.33	28.07 ± 3.90	13.84 ± 2.91	3.43 ± 1.69	4.45 ± 1.61	79.00 ± 7.0
	L-BFGS-B	636.82	11.37 ± 4.18	17.84 ± 5.43	28.07 ± 6.09	13.84 ± 1.35	3.43 ± 1.42	4.45 ± 1.74	79.00 ± 9.5

Antoine Beauchêne

November 14th, 2023

Should be equal to N_{data}

Spectral Analysis

CITS IN2P3

Data

Antoine Beauchêne

November 14th, 2023

Data Alberto	My data
343	319
184	164
137	118
416	416
79	79

Data

SK phase	Data Alberto	My data
Ι	343	319
II	184	164
III	137	118
IV	416	416
VI	79	79

- Why these differences?
 - —
 - He showed the results on the [16, 80] MeV range

Antoine Beauchêne

or 17.5 MeV for SK-II

Alberto performed the fit in [16, 90] MeV range

• I will compare both and take the best energy range

Results for every phase (without systematics)

SK phase	Energies	$-2\ln(\mathscr{L})$	N _{DSNB}	$N_{\nu_e \mathrm{CC}}$	N _{Decay e⁻}	N _{NCQE}	$N_{\mu/\pi}$	N _{Spallation}	$\sum N_j$
	[16, 90] MeV	23.24	0.00	85.63	147.11	47.15	62.56	0.54	343.00
I	[16, 90] MeV	1440.82	0.00 ± 6.38	84.93 ± 7.64	146.78 ± 9.38	48.90 ± 7.43	61.10 ± 7.08	1.28 ± 1.42	342.99 ± 17
	[16, 80] MeV	1440.87	0.00 ± 6.80	71.12 ± 7.39	143.99 ± 10.62	48.25 ± 5.66	54.34 ± 3.04	1.30 ± 1.49	319.00 ± 16
	Nelder-Mead	300.39	0.00	43.92	76.44	19.72	42.17	1.75	184.00
II	[17.5, 90] MeV	1131.91	2.67 ± 5.61	43.58 ± 5.34	73.59 ± 8.43	20.78 ± 3.69	41.26 ± 5.77	2.11 ± 1.38	184.00 ± 13
	[17.5, 80] MeV	992.08	2.65 ± 6.97	33.09 ± 5.97	74.17 ± 8.23	21.04 ± 3.70	30.93 ± 4.87	2.11 ± 1.58	164.00 ± 13
	Nelder-Mead	284.63	4.76	45.01	50.49	10.75	24.43	1.54	137.00
III	[16, 90] MeV	776.22	6.30 ± 4.96	44.77 ± 5.43	48.94 ± 6.74	11.47 ± 2.28	23.86 ± 3.71	1.67 ± 1.10	137.00 ± 10
	[16, 80] MeV	776.22	5.75 ± 5.55	25.86 ± 3.63	52.93 ± 6.84	11.78 ± 2.63	19.97 ± 3.50	1.70 ± 1.01	118.00 ± 10
	Nelder-Mead	124.39	26.21	109.72	158.75	87.57	28.19	5.61	416.05
IV	[16, 90] MeV	2081.02	9.87 ± 6.82	90.59 ± 8.30	189.91 ± 8.27	89.46 ± 7.28	28.25 ± 4.58	7.91 ± 4.25	416.00 ± 16
	[16, 80] MeV	2032.83	11.54 ± 7.58	106.49 ± 9.24	173.20 ± 11.65	88.38 ± 7.74	28.49 ± 4.93	7.90 ± 3.08	416.01 ± 19
	Nelder-Mead	290.34	7.35	18.58	31.32	13.57	3.49	4.70	79.01
VI	[16, 90] MeV	643.66	10.69 ± 3.68	13.09 ± 4.15	33.02 ± 5.85	14.36 ± 1.33	3.33 ± 1.56	4.52 ± 1.65	79.00 ± 8.4
	[16, 80] MeV	636.82	11.37 ± 4.18	17.84 ± 5.43	28.07 ± 6.09	13.84 ± 1.35	3.43 ± 1.42	4.45 ± 1.74	79.00 ± 9.5

Antoine Beauchêne

November 14th, 2023

Profile likelihood ratio

- <u>*H*</u>₀: Backgrounds only
- <u> H_1 </u>: Backgrounds + DSNB
- **Neyman–Pearson lemma**: Likelihood ratio test is the best test for H₀ against H₁

$$\frac{\mathscr{L}(\vec{E} \mid H_0)}{\mathscr{L}(\vec{E} \mid H_1)} \longrightarrow \lambda(N_s = 0) = \frac{\mathscr{L}(\vec{E} \mid N_s = 0, \hat{\vec{N}}_b)}{\mathscr{L}(\vec{E} \mid \hat{N}_s, \hat{\vec{N}}_b)}$$

• \hat{N}_{c} and $\hat{\vec{N}}_{b}$ are the best fit values to data sample • \hat{N}_{h} the best fit values for $N_{s} = 0$

•
$$t_0 = -2\ln(\lambda(0)) \longrightarrow Z_0 = \sqrt{t_0}$$

Result for SK-VI without systematics

Antoine Beauchêne

November 14th, 2023

Defined regions

Antoine Beauchêne

November 14th, 2023

°]	[38°, 53°]	[70°, 90°]
	DSNB + final-state <i>e</i>	NCQE
	DSNB + final-state <i>e</i>	NCQE

Neutrino background MCs

• After third reduction

Antoine Beauchêne

November 14th, 2023

Create background PDFs

• After third reduction

Antoine Beauchêne

November 14th, 2023

Spallation & AFT + Solar cuts

Antoine Beauchêne

November 14th, 2023

Spectral Analysis

Neutron tagging cut to spallation PDF

Antoine Beauchêne

November 14th, 2023

Spectral Analysis

CNTS IN2P:

Normalize PDFs

- *l1* normalization
- <u>After this</u>: Background PDFs ready for use in analysis

Antoine Beauchêne

November 14th, 2023

Spectral Analysis

VI

E_{true} and E_{rec} distributions

- Discarded events with $E_{rec} = 9999$ MeV
- Directly applied 1st and 3rd reduction steps to SK-IV and VI MCs

Spectral Analysis

VII

E_{true} and E_{rec} distributions

(True and Reconstructed) energy distributions for SK-I MCs

Antoine Beauchêne

November 14th, 2023

Spectral Analysis

VIII

Building response matrices

Response matrices Response matrix for SK-I

Antoine Beauchêne

November 14th, 2023

Spectral Analysis

INSTITUT POLYTECHNIQUE DE PARIS

Х

Response matrices Response matrix for SK-I

Antoine Beauchêne

November 14th, 2023

Spectral Analysis

INSTITUT POLYTECHNIQUE DE PARIS

Building response matrices

- Linear behaviour except under $E_{rec} = 8$ MeV in SK-VI
- Why do we have this threshold at $E_{rec} = 8$ MeV with SK-VI?
 - <u>Answer</u>: Effect due to the normalization/Resolution effect

Antoine Beauchêne

November 14th, 2023

Not a problem as the threshold for analysis is 16 MeV

Spectral Analysis

XII

Building response matrices

- Linear behaviour except under $E_{rec} = 8$ MeV in SK-VI
- Why do we have this threshold at $E_{rec} = 8$ MeV with SK-VI?
 - <u>Answer</u>: Effect due to the normalization/Resolution effect

Antoine Beauchêne

November 14th, 2023

Not a problem as the threshold for analysis is 16 MeV

Spectral Analysis

XIII

Spallation & AFT + Solar cuts

Antoine Beauchêne

November 14th, 2023

Cuts & Normalization for SK-IV

• Model of S. Horiuchi (2009)

Antoine Beauchêne

November 14th, 2023

