

GRB host dust extinction: How to deredden data ?

Ny Avo Rakotondrainibe¹ - 2nd year PhD student Thesis advisor: Véronique Buat¹ Co-advisors: Damien Dornic², Damien Turpin³

¹ Aix-Marseille Université, CNRS, CNES, LAM
² Aix-Marseille Université, CNRS, IN2P3, CPPM
³ CEA Saclay, DRF/IRFU/Département d'astrophysique

What is an extinguished GRB afterglow (X-UV-VIS-NIR)?

Wavelength dependent extinction curve:

Describe absorption or scattering from the dusty medium along the line of sight: Galaxy + host

Problem of Galactic reddening

Galactic plane is a problem

.

.

Correct for the Galactic reddening with a standard method:

- > From the GRB position, we find the reddening E (B-V) (SFD (1998), SFD (2011), Plank+14...)
- > Deredden using an average extinction curve for the MW (Cardelli+89, Pei92, ...)

Parametrizations of the extinction curve in the host

Diversity of extinction curves in the Universe: in the Local Group,

distant quasar, GRB host galaxies

- SED fitting of the afterglow considering the type and quality of data:
 - > Photometric data = Average SMC, MW, LMC curves are the most used
 - Spectroscopic, multiband photo = FM86-kind (90, 99) extinction is the most flexible (spectroscopic data)

λ_{rest} [Å]

SMC

(z < 4)

Observed

z~6

1 / λ_{rest} [∝m^{−1}]

Maiolino+04

2000

3000 2500

SMC LMC MW

HD 210121

Zafar+15

^{100E}**V** ¹/⁴**V** 1.5

Z=Z_☉ -- Z=10⁻² Z_☉ -- Z=10⁻⁴ Z_☉ --- Z=0

Z=10⁻⁴ Z_☉

M=25M

1500

1200

Estimation of A_v and extinction curve

- · Impact on the estimation of A_v using one extinction curve or another
- Some idealized simulations and fits of GRB afterglows in the COLIBRI *grizyJH* band filters under different cases of *z* and A_V

WITH X SPECTRAL SLOPE

WITH X SPECTRAL SLOPE

- No extinction = No extinction curve to characterize
- At low *z*, we cannot differentiate the extinction curves
- Better estimation of A_v using only optical data at higher extinction
- . X-ray data is primordial !

Summary

More accurate extinction curve = Better estimation of A_v

Having a substantial A_v = Differentiation of the extinction curves

•

•

•

Photometric data (fixed curves) vs spectroscopic data (flexible curves)

One solution is to have an extinction curve that can retrieve the different properties (N. A. Rakotondrainibe+2024, submitted)

Having X-ray data = Anchor point in the afterglow

With all these informations we can now deredden our data !

$$F_{\nu}^{\text{dereddened}} = F_{\nu}^{\text{obs}} \times 10^{0.4 A_{\lambda}}$$

•

•

•

photo-z determination gives an estimation of A_V and the best extinction curve **impact on** *z* **estimation also**

For our case, it is a post-processing step: data-process-result Does it need to be instantaneous in the pipeline ?

Case per case study as each GRB is different