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1. Sewing Tori to Form a Genus Two Riemann Surface

Consider two oriented tori ¥, = C/A,, with a = 1,2 for
A;, =27i(Z ® 147) for 7, € Hy, the complex upper half plane.

For z, € ¥, the closed disk |z,| < 7, is contained in ¥, provided
rq < %D(TQ) where

D(r,) = min |A| = minimal lattice distance.
AEAL, A0

Introduce a sewing parameter € € C and excise the disks
|z1] < |€|/r2 and |z2] < |€|/r1 where

1
|6| <rirg < zD(Tl)D(TQ).
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Identify annular regions |e|/ro < |z1] <71 and |e|/r1 < |z2] < 7o
via the sewing relation
Z1%9 — €.

2’120 2’220

<

lel/r2 el/m

Gives a genus two Riemann surface $(2) parameterized by the
domain

1
DE = {(7’1,7’2,6) cH; xH; xC ‘ |€| < ZD(Tl)D(TZ)}
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Structures on (2 Constructed from Genus One Data

Yamada (1980) describes how to compute the period matrix and
other structures on a genus g Riemann surface in terms of lower
genus data.

For standard homology basis a;,b; with : =1,...,g on a genus g
Riemann surface consider the normalized differential of the second
kind which is a symmetric meromorphic form with

dzd _
w(z,y) ~ Y for local coordinates z ~ v,
(z —y)?

where [, w(z,) =0.
A normalized basis of holomorphic 1-forms v; and the period
matrix €);; are given by

w@) = o),

K

1
Qij = 277” bil/i.
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w? on the Sewn Surface 2(?

w®) can be determined from w(!) on each torus in Yamada’s
sewing scheme [Yamada, Mason-Tuite].
For a torus ©(1) = C/A the differential is

w(l)(x7y) = PQ(:I" - va) dx dya
P2(277_) = @(Z,T) =+ EZ(T)7
for Weierstrass function
1
plzT) = = + Y (k= DE(r) 2,
k>4

and Eisenstein series for &k > 2

Ei(r) = zmkzlzrmm

E). vanishes for odd k£ and is a weight £ modular form for k > 4.
E» is a quasi-modular form.
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Expanding
1 1
— T E C(k,DaF 1yt

EI>1

where
Ok = Clh ) = ()T (o),

we compute w®)(z,y) in the sewing scheme in terms of the
following genus one data

Aalk,1,7q€) = S0k, 1 7a) =

€Es(7a) 0 V32 Ey(1,) 0
0 —3e2E4(1,) 0 —5v2e3 Fg(7,)
V32 Ey(14) 0 10e3 Eg(14) 0
0 —5v2e3Eg(14) 0 —35€e* B3 (74)
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A Determinant and the Period Matrix

Consider the infinite matrix I — A1 Ay where I is the infinite
identity matrix and define det(I — A;A) by

logdet(I — A1A2) = Trlog([ — A1A2)
1

n>1
as a formal power series in e.

Theorem (Mason-Tuite)

(a) The infinite matrix
(I—A1Ay) =) (A4,
n>0

is convergent for (11, T2, €) € D°.
(b) det(I — A1 As) is non-vanishing and holomorphic on D¢,

v
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Furthermore we may obtain an explicit formula for the genus two
period matrix Q = Q® on £

Theorem (Mason-Tuite)

Q = Q(71, T2, €) is holomorphic on D¢ and is given by

27Tiﬂ11 = 27Ti7'1 I E(AQ(I — AlAg)_l)(l, 1),
2milloy = 2mwiTy + E(Al(f = A2A1)_1)(1, 1),
2wy = —e(I — A1 A2)71(1,1).

Here (1, 1) refers to the (1,1)-entry of a matrix.
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The Szego Kernel

The Szegd Kernel is defined by

5 () aubat

I8 OB@y) TV

510] i =

for x ~y,

with 9 {g} (0) # 0 for Riemann theta series with real
characteristics a = (o), B = (5;) fori=1,...,g

0, [g} (z]Q) = Z exp (ir(n + a).Q.(n + a) + (n + «).(z + 27if)) ,
nez9

_ —2mif; _ 2mia g s
Qj__e ﬂjv d)j__e 7, ]_17"'797

and E(x,y) is the genus g prime form.
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Genus One Szego Kernel

On the torus (1) the Szego kernel for (6, ¢) # (1,1) is

s [ Z } (z,y|T) = P { Z ] (z —y,T)dﬂU%dy%

)

where

i 9 % | (z,7)
Pl{Z(Z’T)*Q(o,T) 8;%?;;)’

for ¥1(z,7) =0 [

[NIENIE
—~
N
9
N—
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Twisted Eisenstein Series

We define ‘twisted’” modular weight k Eisenstein series [DLM,
Mason-Tuite-Z]

Ald]en - -l f]os

(4]0 - arE S e
It is also useful to note that

Py [ Z ] (x—y,7)= x%Jr pNe [ Z ] (k, Da* 1y,

where €| 9 | (u1.7) = (1) (1) B | 3 | o)
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Modular Properties

Define the standard left action of the modular group for

7:<CCL Z>€F:SL(2,Z)On (Z7T)€CXHWith

(2,7) = (.2, 7.7) = _Z ar+b
VAST) = 057T) = cr+d er+d)

We also define a left action of I" on (6, ¢)

20152

Then we obtain:

Theorem (Mason-Tuite-Z)

For (0, ¢) # (1,1) we have

0 0
Py (fy. [ & ]) (y.2,7.7) = (e + d)* P, [ & ] (z,7).




Modular Properties

Theorem (Mason-Tuite-Z)

For (6,8) # (1,1), Ex [ ’

B, <'y. [ Z D (1) = (cr + ) By [ Z ] (7).

} is @ modular form of weight k where
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The Szego Kernel on ) and another Determinant

We may compute S() [Z] (x,y) for @ = (01,62) in the sewing
scheme in terms of the genus one data

O
Pa

S(2) is described in terms of the infinite matrix I — Q for

Fo(k,1) = F, [9“] (k,1, 70, €) = e2kH=D( [

b ] (k,1,7q).

Q= " }wm Y

Theorem (Tuite-Z)

(a) The infinite matrix (I — Q)~! = > n>0 Q" is convergent for
(11, 72,€) € D,
(b) det(I — Q) is non-vanishing and holomorphic on D¢.
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2. Vertex Operator Super Algebras

A Vertex Operator Superalgebra (VOSA) is a quadruple
VY, 1,w): V=Vg@® Vi =P,,5¢ Va is a superspace, Y is a
linear map Y : V — (EndV)[[z, 2~ !]]: so that for any vector
(state) a € V,

Y(a,z) = Za(n)z_”_l, a(k)l =6 —1a, k> —1,
nez
a(n)Va C Vaip(a), With locality property for all a, b € V/

(z =) [ (a,2), Y (b,y)] = 0;

1 € Vg is the vacuum vector, Y (1, z) = Idy, and w € V§, the
conformal vector,
- X s

nez
where L(n) forms a Virasoro algebra for central charge ¢
c
[L(m), L(n)] = (m = n)L(m +n) +

m3 — m)6m,—n.-



L(—1) satisfies the translation property

Y(L(-1)a,z) = %Y(m z).

L(0) describes the grading with L(0)a = wt(a)a, and
Vo, ={a € V|wt(a) = n}.
We quote also the standard commutator property of VOSAs

). Y02 = 3 () i)

Note also the associativity property for a, b € V,

Y(a,2)Y (b,y) =Y (Y (a,z — y)b,y),
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Heisenberg Continuous Automorphisms and Twisted

Modules

The Heisenberg vector zero mode a(0) generates a continuous
VOSA automorphism

g = exp(2miaa(0)), a€R.

In particular we define the order two ‘fermion number’ by
o = exp(mia(0)).

We can construct [Li] a g-twisted module as follows. Define

Ala, z) = 2299 exp faZa(n)i ,
n>1 n
and forallv eV
Yy(v,2) =Y (A(—a, 2)v, 2).

Then (V,Y}) is a g-twisted V-module M,.



The Genus Two Partition Function for a VOA

For a VOA V = @®,,>0V}, of central charge c define the genus one
partition (trace or characteristic) function by

ZP(a) = Trv (g2 = 37 dim Vg™~ /2,
n>0

For the Heisenberg VOA M

Z3(q) = oy forn(m = i [T - ™).
n>1
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For a Heisenberg module M ® e we have

the lattice theta function 01 (q).
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1-Point Trace Functions

For u € V we define
2y (u,7) = Tr(Y (MO, 2)g"),

which is independent of z.
Zhu developed recursion relations for these 1-point functions in
terms of the square bracket VOA with vertex operators

Yiu, 2] = Y(¢"Ou,q. — 1) = Zu[n]z”fl,

n

(for q. = €*) and Virasoro vector & = w — ;1. V = ©nVjn) with
associated @ grading operator L[0].
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The Heisenberg VOA

For the Heisenberg VOA M generated by a € V; we may choose a
Fock basis
u = a[—ki]...a[—kn1,

for k; > 1 square bracket weight wt[u] =), k;.
Zhu's recursion relations allows us to compute all 1-point functions
in this example:

Theorem (Mason-Tuite)

Z](\/ll) (’LL, 7_) = QU(T)y

(q)
where Q. (T) is a quasimodular form of weight wt[u] which can be
combinatorially expressed in terms of all pairs C'(k;, k;, 7).

This can be generalized for 1-point functions ZJ(\/II?XJeD‘ (u, ) for any
Heisenberg module.
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The Genus Two Partition Function

We define the genus two partition function in the earlier sewing
scheme in terms of data coming from the two tori, namely the set
of 1-point functions Z‘(})(U,Ta) forall u e V.

We assume that V' has a nondegenerate invariant bilinear form -
the Li-Zamolodchikov metric (which holds if dimVy =1 and V' is
simple).

Define

Z‘(/2)(7’1,7'2,6) = Ze” Z Z‘(})(U,Tl)z‘(/l)(ﬂ,Tg)

The inner sum is taken over any basis and @ is dual to u wrt to the
Li-Zamolodchikov metric.

Alexander Zuevsky VOSAs on a Riemann Surface



The Heisenberg VOA.

We can compute Z](S[) using a combinatorial-graphical technique
based on the explicit Fock basis and recalling the infinite matrices
Al, AQZ

Theorem (Mason-Tuite)

(a) The genus two partition function for the rank one Heisenberg
VOA is

1
ZD (), 1, €) = ——(det(I — A1 A9)) V2,
M (Tl T2 6) 77(7—1)77(7—2)( ( 1 2))

(b) Z](VQI) (11,72, €) is holomorphic on the domain D¢,

(c) Z](\? (71,72, €)? is automorphic of weight —1 wrt the modular
group G = SL(2,7Z)12 C Sp(4,7Z) with a Siegel-form like
automorphic factor and multipliers.

(d) Z](VQI) (11,72, €) has an infinite product formula.
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Heisenberg Modules

We may also consider a pair of Heisenberg modules M ® e%* for
a = 1,2. The partition function is then

Z(gi)’(m T1,7'2, Z Z ZM®6Q1 u Tl)Z](M?ge%( )
n>0 UGM[n]

Let a.Q.a = Zi,jzlﬂ a;§;ja; where €);; is the genus two period
matrix.

Theorem (Mason-Tuite)

(a)

Z&%)’OQ (11,7T2,€) = e”a‘Q‘O‘Z](\?[) (T1,72,€),

(b) 2&21)7042 (71,72, €) is holomorphic on the domain D¢.
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Lattice VOA

Consider a lattice VOA V;, for a rank [ lattice. Viewing M' ® e® as
a simple module for M the previous result implies

Theorem (Mason-Tuite)

We have )
Z‘(/QL)(Tl,TQ,E) = Z](Vzl), (Tl,Tg,e)H(L)(Q),

where 9(L2)(Q) is the genus two Siegel lattice theta function

02(Q) = Y exp(mi((ar, )1 + 2(av, )2 + (B, 5)Qa2)).
a,BEL
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4. Rank Two Fermionic Vertex Operator Super Algebra

Consider the Vertex Operator Super Algebra (VOSA) generated by
Y(F,z) =Y F(n)2",
nel

for two vectors 1)* with modes satisfying anti-commutation
relations

W (m), Y~ ()4 = m—n—1, [F(m),¥E(n)]4 =

The VOSA vector space V' = @y>0Vj/2 is a Fock space with basis
vectors

U(k,1) =T (—k1)... 0T (—k )Y (—l1) ... 0~ (1)1,
of weight
1 1
wt{P(k, D] = (ki +5) + > (1 + 5),
( J
where 1 < ki <ko<...<ksand 1<y <ly <...<l; with
YpE (k)1 = 0 for all k > 0.



The conformal vector and its
1 _ _
w =W (=2 (D)+v (=29 (=D)L,
whose modes generate a Virasoro algebra of central charge 1. ¢*
has L(0)-weight 1.
The weight 1 subspace of V' is V] = Ca, for normalized Heisenberg

bosonic vector a = )" (—1)1~(—1)1, conformal vector, and
Virasoro grading operator are

[a(m), a(n)] = mbm,—n,

w=—a(-1)1,

a 2
£0) = "0 L S o nyan).

2
n>0
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Genus One Super Trace Functions

We define the genus one partition function for the VOSA by the
supertrace
1 _1 _1 L
2 (r) = STy (¢"0720) = Try (g0 21) = g2 [[(1-¢""2)%,
n>0

where gu = e2mwt(w)y,

More generally, we can construct a og-twisted module M, for any
automorphism g = ¢2™84(0) generated by the Heisenberg state

a € V.

We also introduce a second automorphism h = e
the orbifold og-twisted trace by

h _1
20| 1] @) = $Toas, (1",
to find for § = e~ 2™

ZzM [ h ] (q) = qPH2P 222 T (1 — 67 g =P 1) (1 — 0g 7).

g >1
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Genus One 1-Point Functions

Each orbifold 1-point function can found from a generalized Zhu
reduction formulas as a determinant.

Theorem (Mason-Tuite-Z)

For a Fock vector

Uik, 1) = ¢ [kl .. [kl (<] . o [l

ZP [ Z ] (U[k,1], q) = det <C [ Z ]) 75 [ " } (a),

where fori,j =1,2,...,n

e, [ Z ] (i,j):C[Z](kialjvT)-
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Genus One n-Point Functions

In general, we can define the genus one orbifold n-point function
for vi,...,v, €V by

h
Z‘(/l) [ g } ((v1,21)5 -+, (Uny 2n)5q)
= STry,, (h Y(vi,21)...Y (Un, 2n) qL(O)—ﬁ>

—z» [ Z } (Y[or, 21].Y [v3, 23] - .. ¥ [0ms 201, ).

Every orbifold n-point function can be computed using generalized
Zhu reduction formulas in terms of a determinant with entries
arising from the basic 2-point function for 1,1~ [Mason-Tuite-Z].
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Zhu Reduction Formula

To reduce an n-point function to a sum of n — 1-point functions
we need:

the supertrace property:

STr(AB) = p(A, B)STr(BA),  p(A, B) = (—1)PAr(B),
Borcherds commutation formula:

am Y02 = 3 (7)) ¥ el

J

an expansion for P;-function:
0 1 -
N
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Generating Function

Generating two-point function (for (6, ¢) # (1,1)) is given by

202wtz =m [l @ma A0 [ 0
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Genus One n-Point Functions

Theorem (Mason-Tuite-Z)

For n Fock vectors ¥(®) = w(®)[—k(®); _1(@)] and
' — 9@ [—k@; _1@)], for k@ = k. kY and

1(0) = lga), . .lt(z) witha =1...n. Then for (0,¢) # (1,1) the
corresponding n-point functions are non-vanishing provided

> (8q —tq) =0, and

a=1
A9 [ ] (0 2, (69,7

= ZO (5 (TP, 1), (B, 2):7)
= € detM. Z&?I(f, T).
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Here M is the block matrix
C(ll) D(12) o D(ln)

D(21) C(22) o D(2n)
M= . . . >

Do L gl
with
cl (i, j) = C [ Z } k0D, 7), (1< <s0,1<5<ta),

for sq,tq > 1 with 1 <a <n and

D ig) = | § [0 o), (i<t <s <)
for sq,tp > 1 with 1 < a,b<n and a #b. € is the sign of the
permutation associated with the reordering of ¥ to the
alternating ordering.

Furthermore, the n-point function (1) is an analytic function in z,
and converges absolutely and uniformly on compact subsets of the

domain |q| <¢.,,| < 1.



The Genus Two Fermionic Partition Function

Following the definition for the bosonic VOA we define for hy, g,

h
Z(Q) |: g :| (Q17qQ76) =

Sy 2 [ 2wz [ 1]

mesz Z UE‘/[.,,L]

The inner sum is taken over any V) basis and @ is dual to u with
respect to the Li-Zamolodchikov square bracket metric.

Z‘(/l) [ za } (u, qq) is the genus one orbifold 1-point function.
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Recall that the non-zero 1-point functions arise for Fock vectors

Wik, 1] = k1] . [k [ o [,

m=wt Uk 1= Y (k+1+1),

1<i<n
zM [ Z ] (U[k, 1], ) = det <C [ Z D A% [ Z } (q).

The Li-Zamolodchikov metric dual to the Fock vector is

Tk, 1 = (—1)"T[L, k].
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Recalling the infinite matrix @ we find

Theorem (Tuite-Z)

(a) The genus two orbifold partition function is

20| 4 a0 =20 | 1 | @20 2 | @) aertr-a),

(b) Z?) [ Z ] (g1, g2, €) is holomorphic on the domain D¢,

(c) z? [ }gl ] (q1, G2, €) has natural modular properties under the

action of G.
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Bosonization

The genus one orbifold partition function can be alternatively
computed by decomposing the VOSA into Heisenberg modules
M ® e™ indexed by a(0) integer eigenvalues m, i.e., a Z lattice,

7z [ h } (1) = 3 ()P g (HOH TR Dme
g meZL
2mi(a+1/2)(B+1/2) _ 1
_ ¢ 19[ 5*9}(7).
n(7) aty

Comparing to the fermionic product formula we obtain the
standard Jacobi triple product formula:

[T -+ + = g

n>0 meZ
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The Genus Two Jacobi Triple Product Formula

The genus two partition function can similarly be computed in the
bosonized formalism to obtain a genus two version of the Jacobi
triple product formula for the genus two Riemann theta function
[Mason-Tuite-Z]

h
Z(2) (QI7QQ76) - 6(2) “ (Q)Z](S[)(QLCD,E)y
g b

for an appropriate character valued genus two Riemann theta
function

a im(m+a).Q.(m+a Ti(m+a).
@(2)[1)}(9): 3 einma) 2 (nta)2mitma)b

meZ>2
Comparing with the fermionic result we thus find that on D¢

o® [ Z ] ()

a1 as
Y (m1)0 (T2)
by bo

= det(I — Ay A9)Y2 det(I — Q).



Fay's Trisecant ldentity

In a similar fashion we can compute the general 2n-generating
function Ggl)h in the bosonic setting to obtain:

Theorem (Tuite-Z)

G;B,h(f; L1y Tn; Y1, - 7yn;7)
e2mi(a+1/2)(8+1/2) |: B+ 1 :| n
- v 2 Ly —Yi), T
) ot || 2w
[1 K(l)(l’i—ZEj,T)K(l)(yi—yj,T)

1<i<j<n
[T KO(z—yj,7)
1<i,j<n
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Comparing this to fermionic expressions for (0, ¢) # (1,1) we
obtain the classical Frobenius elliptic function version of Fay's
Generalized Trisecant Identity [Fay]:

Corollary (Tuite-Z)
For (0, ¢) # (1,1) we have

o| Vi | (Be-mr)
0[ B+ ] 0,7)

a—i—%

det(P) =

11 I((l)(xi—fmj,r)lf(l)(yiAfyj,T)

1<i<j<n
T KO (zi—y;,7)
1<i,j<n
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Corollary (Tuite-Z)

For (0,¢) = (1,1),
det(P) = —KO (Zm —yi),7>
=i
H K(l)(xz*xjvT)K(l)(yliijT)
1<i<j<n
[I K(zi—y;7) ’
1<ij<n
with
Pi(z1—y1,7) ... Pi(w1—yn,7) 1
P— ; e :
Pi(zy —y1,7) Pi(zn —yn,7) 1
1 1 0

Alexander Zuevsky VOSAs on a Riemann Surface



Generalized Fay's Trisecant Identity

We may generalize these identities using [Mason-Tuite]. Consider
the general lattice n-point function: [Tuite-Z] For integers
mj,n; > 0 satisfying >, m; = Zj 1 15, we have

ZO(f; (1™ 21), ... (A0e™  2,), (18 ™™, y1), ... (1@ ™, y,); )

o2mi(a+1/2)(B+1/2)

= ’19|: B+2 :| Zmzwz anij

n(7)
[1 K(ﬂﬁz‘—xkﬁ)mlm’“ H K(y; —y, 7)™

1<i<k<r 1<5<I<s

[ K(zi—y,7)mm

1<i<r,1<j<s
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Comparing this to the expression for n-point functions we obtain a
new elliptic generalization of Fay's Trisecant Identity:

Corollary (Tuite-Z)
For (0, ¢) # (1,1) we have

B3 (= mszs — 5
19[ a+l ilTrLZ:JcZ > j=1 MY T

o = T

1_.[ K(xl — Tk, T)mimk 1_.[ K(yj — Y, T)njnl
1<i<k<r 1<j<i<s
K(:El — Y, T)minj
1<i<r,1<j<s
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Here M is the block matrix

ptyH .. DUs)
M =

)

DGU DGs)

with D(@) the Mg X My matrix
(@b)(: -\ _ 0 .. . )
D (17])_D ¢ (Z7j77—7‘ra_yb)7 (]-SZSmthlSanb)a

for1<a<rand1l<b<s, and D-functions are given by the
expansion

Py [ Z } (z+ 21— 29,7) = Z D [ Z ] (k,1,2) 281201

ki>1

A similar identity for (6, ¢) = (1,1) generalizing (1) can also be
described.
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