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1. Sewing Tori to Form a Genus Two Riemann Surface

Consider two oriented tori Σa = C/Λτa with a = 1, 2 for
Λτa = 2πi(Z⊕ τaZ) for τa ∈ H1, the complex upper half plane.

For za ∈ Σa the closed disk |za| ≤ ra is contained in Σa provided
ra <

1
2D(τa) where

D(τa) = min
λ∈Λτa ,λ 6=0

|λ| = minimal lattice distance.

Introduce a sewing parameter ε ∈ C and excise the disks
|z1| ≤ |ε|/r2 and |z2| ≤ |ε|/r1 where

|ε| ≤ r1r2 <
1
4
D(τ1)D(τ2).
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Identify annular regions |ε|/r2 ≤ |z1| ≤ r1 and |ε|/r1 ≤ |z2| ≤ r2
via the sewing relation

z1z2 = ε.
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Gives a genus two Riemann surface Σ(2) parameterized by the
domain

Dε = {(τ1, τ2, ε) ∈ H1 ×H1 × C | |ε| < 1
4
D(τ1)D(τ2)}.
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Structures on Σ(2) Constructed from Genus One Data

Yamada (1980) describes how to compute the period matrix and
other structures on a genus g Riemann surface in terms of lower
genus data.
For standard homology basis ai,bj with i = 1, . . . , g on a genus g
Riemann surface consider the normalized differential of the second
kind which is a symmetric meromorphic form with

ω(x, y) ∼ dxdy

(x− y)2
for local coordinates x ∼ y,

where
∫
ai
ω(x, ·) = 0.

A normalized basis of holomorphic 1-forms νi and the period
matrix Ωij are given by

νi(x) =
∮

bi

ω(x, ·),

Ωij =
1

2πi

∮
bi

νi.
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ω(2) on the Sewn Surface Σ(2)

ω(2) can be determined from ω(1) on each torus in Yamada’s
sewing scheme [Yamada, Mason-Tuite].
For a torus Σ(1) = C/Λτ the differential is

ω(1)(x, y) = P2(x− y, τ) dx dy,
P2(z, τ) = ℘(z, τ) + E2(τ),

for Weierstrass function

℘(z, τ) =
1
z2

+
∑
k≥4

(k − 1)Ek(τ)zk−2,

and Eisenstein series for k ≥ 2

Ek(τ) =
1

(2πi)k

∑
m

[ ′∑
n

1
(mτ + n)k

]
.

Ek vanishes for odd k and is a weight k modular form for k ≥ 4.
E2 is a quasi-modular form.
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Expanding

P2(x− y, τ) =
1

(x− y)2
+
∑
k,l≥1

C(k, l)xk−1yl−1,

where

C(k, l) = C(k, l, τ) = (−1)k+1 (k + l − 1)!
(k − 1)!(l − 1)!

Ek+l(τ),

we compute ω(2)(x, y) in the sewing scheme in terms of the
following genus one data

Aa(k, l, τa, ε) = ε(k+l)/2
√

kl
C(k, l, τa) =


εE2(τa) 0

√
3ε2E4(τa) 0 · · ·

0 −3ε2E4(τa) 0 −5
√

2ε3E6(τa) · · ·√
3ε2E4(τa) 0 10ε3E6(τa) 0 · · ·

0 −5
√

2ε3E6(τa) 0 −35ε4E8(τa) · · ·
...

...
...

...
. . .

 .
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A Determinant and the Period Matrix

Consider the infinite matrix I −A1A2 where I is the infinite
identity matrix and define det(I −A1A2) by

log det(I −A1A2) = Tr log(I −A1A2)

= −
∑
n≥1

1
n

Tr((A1A2)n),

as a formal power series in ε.

Theorem (Mason-Tuite)

(a) The infinite matrix

(I −A1A2)−1 =
∑
n≥0

(A1A2)n,

is convergent for (τ1, τ2, ε) ∈ Dε.
(b) det(I −A1A2) is non-vanishing and holomorphic on Dε.
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Furthermore we may obtain an explicit formula for the genus two
period matrix Ω = Ω(2) on Σ(2)

Theorem (Mason-Tuite)

Ω = Ω(τ1, τ2, ε) is holomorphic on Dε and is given by

2πiΩ11 = 2πiτ1 + ε(A2(I −A1A2)−1)(1, 1),
2πiΩ22 = 2πiτ2 + ε(A1(I −A2A1)−1)(1, 1),
2πiΩ12 = −ε(I −A1A2)−1(1, 1).

Here (1, 1) refers to the (1, 1)-entry of a matrix.
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The Szegö Kernel

The Szegö Kernel is defined by

S

[
θ

φ

]
(x, y|Ω) =

ϑ
[

α
β

] (∫ x
y ν
)

ϑ
[

α
β

]
(0)E(x, y)

∼ dx
1
2dy

1
2

x− y
for x ∼ y,

with ϑ
[

α
β

]
(0) 6= 0 for Riemann theta series with real

characteristics α = (αi), β = (βi) for i = 1, . . . , g

ϑ

[
α

β

]
(z|Ω) =

∑
n∈Zg

exp (iπ(n+ α).Ω.(n+ α) + (n+ α).(z + 2πiβ)) ,

θj = −e−2πiβj , φj = −e2πiαj , j = 1, . . . , g,

and E(x, y) is the genus g prime form.
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Genus One Szego Kernel

On the torus Σ(1) the Szegö kernel for (θ, φ) 6= (1, 1) is

S(1)

[
θ
φ

]
(x, y|τ) = P1

[
θ
φ

]
(x− y, τ)dx

1
2dy

1
2 ,

where

P1

[
θ
φ

]
(z, τ) =

ϑ

[
α
β

]
(z, τ)

ϑ

[
α
β

]
(0, τ)

∂zϑ1(0, τ)
ϑ1(z, τ)

,

for ϑ1(z, τ) = ϑ

[
1
2
1
2

]
(z, τ).
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Twisted Eisenstein Series

We define ‘twisted’ modular weight k Eisenstein series [DLM,
Mason-Tuite-Z]

P1

[
θ
φ

]
(z, τ) =

1
z
−
∑
k≥1

Ek

[
θ
φ

]
(τ)zk−1,

Ek

[
θ
φ

]
(τ) =

1
(2πi)k

∑
m

[ ′∑
n

θmφn

(mτ + n)k

]
.

It is also useful to note that

P1

[
θ
φ

]
(x− y, τ) =

1
x− y

+
∑
k,l≥1

C

[
θ
φ

]
(k, l)xk−1yl−1,

where C

[
θ
φ

]
(k, l, τ) = (−1)l

(
k+l−2
k−1

)
Ek+l−1

[
θ
φ

]
(τ).
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Modular Properties

Define the standard left action of the modular group for

γ =
(
a b
c d

)
∈ Γ = SL(2,Z) on (z, τ) ∈ C×H with

γ.(z, τ) = (γ.z, γ.τ) =
(

z

cτ + d
,
aτ + b

cτ + d

)
.

We also define a left action of Γ on (θ, φ)

γ.

[
θ
φ

]
=
[
θaφb

θcφd

]
.

Then we obtain:

Theorem (Mason-Tuite-Z)

For (θ, φ) 6= (1, 1) we have

Pk

(
γ.

[
θ
φ

])
(γ.z, γ.τ) = (cτ + d)kPk

[
θ
φ

]
(z, τ).
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Modular Properties

Theorem (Mason-Tuite-Z)

For (θ, φ) 6= (1, 1), Ek

[
θ
φ

]
is a modular form of weight k where

Ek

(
γ.

[
θ
φ

])
(γ.τ) = (cτ + d)kEk

[
θ
φ

]
(τ).
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The Szegö Kernel on Σ(2) and another Determinant

We may compute S(2)
[

θ
φ

]
(x, y) for θ = (θ1, θ2) in the sewing

scheme in terms of the genus one data

Fa(k, l) = Fa

[
θa

φa

]
(k, l, τa, ε) = ε

1
2
(k+l−1)C

[
θa

φa

]
(k, l, τa).

S(2) is described in terms of the infinite matrix I −Q for

Q =

 0 ξ F1

[
θ1

φ1

]
−ξ F2

[
θ2

φ2

]
0

 , ξ =
√
−1.

Theorem (Tuite-Z)

(a) The infinite matrix (I −Q)−1 =
∑

n≥0Q
n is convergent for

(τ1, τ2, ε) ∈ Dε,
(b) det(I −Q) is non-vanishing and holomorphic on Dε.
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2. Vertex Operator Super Algebras

A Vertex Operator Superalgebra (VOSA) is a quadruple
(V, Y,1, ω): V = V0̄ ⊕ V1̄ =

⊕
n≥0 Vn is a superspace, Y is a

linear map Y : V → (EndV )[[z, z−1]]: so that for any vector
(state) a ∈ V ,

Y (a, z) =
∑
n∈Z

a(n)z−n−1, a(k)1 = δk,−1a, k ≥ −1,

a(n)Vα ⊂ Vα+p(a), with locality property for all a, b ∈ V

(x− y)N [Y (a, x), Y (b, y)] = 0;

1 ∈ V0̄,0 is the vacuum vector, Y (1, z) = IdV , and ω ∈ V0̄,2 the
conformal vector,

Y (ω, z) =
∑
n∈Z

L(n)z−n−2,

where L(n) forms a Virasoro algebra for central charge c

[L(m), L(n)] = (m− n)L(m+ n) +
c

12
(m3 −m)δm,−n.
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L(−1) satisfies the translation property

Y (L(−1)a, z) =
d

dz
Y (a, z).

L(0) describes the grading with L(0)a = wt(a)a, and
Vn = {a ∈ V |wt(a) = n}.
We quote also the standard commutator property of VOSAs

[a(m), Y (b, z)] =
∑

j≥0

(
m

j

)
Y (a(j)b, z)zm−j .

Note also the associativity property for a, b ∈ V ,

Y (a, x)Y (b, y) = Y (Y (a, x− y)b, y),
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Heisenberg Continuous Automorphisms and Twisted
Modules

The Heisenberg vector zero mode a(0) generates a continuous
VOSA automorphism

g = exp(2πiαa(0)), α ∈ R.

In particular we define the order two ‘fermion number’ by
σ = exp(πia(0)).

We can construct [Li] a g-twisted module as follows. Define

∆(α, z) = zαa(0) exp

−α∑
n≥1

a(n)
(−z)−n

n

 ,

and for all v ∈ V

Yg(v, z) = Y (∆(−α, z)v, z).

Then (V, Yg) is a g-twisted V -module Mg.
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The Genus Two Partition Function for a VOA

For a VOA V = ⊕n≥0Vn of central charge c define the genus one
partition (trace or characteristic) function by

Z
(1)
V (q) = TrV (qL(0)−c/24) =

∑
n≥0

dimVnq
n−c/24,

For the Heisenberg VOA M

Z
(1)
M (q) =

1
η(τ)

for η(τ) = q
1
24

∏
n≥1

(1− qn),
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For a Heisenberg module M ⊗ eα we have

Z
(1)
M⊗eα(q) =

qα2/2

η(τ)
.

For a lattice VOA VL this implies

Z
(1)
VL

(q) =
θL(q)
η(τ)c

, for θL(q) =
∑
α∈L

exp(πiτ(α, α)),

the lattice theta function θL(q).
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1-Point Trace Functions

For u ∈ V we define

Z
(1)
V (u, τ) = Tr(Y (zL(0)u, z)qL(0)),

which is independent of z.
Zhu developed recursion relations for these 1-point functions in
terms of the square bracket VOA with vertex operators

Y [u, z] = Y (qL(0)
z u, qz − 1) =

∑
n

u[n]zn−1,

(for qz = ez) and Virasoro vector ω̃ = ω − c
241. V = ⊕nV[n] with

associated ω̃ grading operator L[0].
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The Heisenberg VOA

For the Heisenberg VOA M generated by a ∈ V1 we may choose a
Fock basis

u = a[−k1] . . . a[−kn]1,

for ki ≥ 1 square bracket weight wt[u] =
∑

i ki.
Zhu’s recursion relations allows us to compute all 1-point functions
in this example:

Theorem (Mason-Tuite)

Z
(1)
M (u, τ) =

Qu(τ)
η(q)

,

where Qu(τ) is a quasimodular form of weight wt[u] which can be
combinatorially expressed in terms of all pairs C(ki, kj , τ).

This can be generalized for 1-point functions Z
(1)
M⊗eα(u, τ) for any

Heisenberg module.
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The Genus Two Partition Function

We define the genus two partition function in the earlier sewing
scheme in terms of data coming from the two tori, namely the set

of 1-point functions Z
(1)
V (u, τa) for all u ∈ V .

We assume that V has a nondegenerate invariant bilinear form -
the Li-Zamolodchikov metric (which holds if dimV0 = 1 and V is
simple).
Define

Z
(2)
V (τ1, τ2, ε) =

∑
n≥0

εn
∑

u∈V[n]

Z
(1)
V (u, τ1)Z

(1)
V (ū, τ2)

The inner sum is taken over any basis and ū is dual to u wrt to the
Li-Zamolodchikov metric.
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The Heisenberg VOA.

We can compute Z
(2)
M using a combinatorial-graphical technique

based on the explicit Fock basis and recalling the infinite matrices
A1, A2:

Theorem (Mason-Tuite)

(a) The genus two partition function for the rank one Heisenberg
VOA is

Z
(2)
M (τ1, τ2, ε) =

1
η(τ1)η(τ2)

(det(I −A1A2))−1/2,

(b) Z
(2)
M (τ1, τ2, ε) is holomorphic on the domain Dε,

(c) Z
(2)
M (τ1, τ2, ε)2 is automorphic of weight −1 wrt the modular

group G = SL(2,Z) o 2 ⊂ Sp(4,Z) with a Siegel-form like
automorphic factor and multipliers.

(d) Z
(2)
M (τ1, τ2, ε) has an infinite product formula.
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Heisenberg Modules

We may also consider a pair of Heisenberg modules M ⊗ eαa for
a = 1, 2. The partition function is then

Z(2)
α1,α2

(τ1, τ2, ε) =
∑
n≥0

εn
∑

u∈M[n]

Z
(1)
M⊗eα1 (u, τ1)Z

(1)
M⊗eα2 (ū, τ2),

Let α.Ω.α =
∑

i,j=1,2 αiΩijαj where Ωij is the genus two period
matrix.

Theorem (Mason-Tuite)

(a)

Z(2)
α1,α2

(τ1, τ2, ε) = eiπα.Ω.αZ
(2)
M (τ1, τ2, ε),

(b) Z
(2)
α1,α2(τ1, τ2, ε) is holomorphic on the domain Dε.
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Lattice VOA

Consider a lattice VOA VL for a rank l lattice. Viewing M l ⊗ eα as
a simple module for M l the previous result implies

Theorem (Mason-Tuite)

We have
Z

(2)
VL

(τ1, τ2, ε) = Z
(2)

M l(τ1, τ2, ε)θ
(2)
L (Ω),

where θ
(2)
L (Ω) is the genus two Siegel lattice theta function

θ
(2)
L (Ω) =

∑
α,β∈L

exp(πi((α, α)Ω11 + 2(α, β)Ω12 + (β, β)Ω22)).
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4. Rank Two Fermionic Vertex Operator Super Algebra

Consider the Vertex Operator Super Algebra (VOSA) generated by

Y (ψ±, z) =
∑
n∈Z

ψ±(n)z−n−1,

for two vectors ψ± with modes satisfying anti-commutation
relations

[ψ+(m), ψ−(n)]+ = δm,−n−1, [ψ±(m), ψ±(n)]+ = 0.

The VOSA vector space V = ⊕k≥0Vk/2 is a Fock space with basis
vectors

Ψ(k, l) ≡ ψ+(−k1) . . . ψ+(−ks)ψ−(−l1) . . . ψ−(−lt)1,

of weight

wt[Ψ(k, l)] =
∑

i

(ki +
1
2
) +

∑
j

(lj +
1
2
),

where 1 ≤ k1 < k2 < . . . < ks and 1 ≤ l1 < l2 < . . . < lt with
ψ±(k)1 = 0 for all k ≥ 0.
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The conformal vector and its

ω =
1
2
[ψ+(−2)ψ−(−1)+ψ−(−2)ψ+(−1)]1,

whose modes generate a Virasoro algebra of central charge 1. ψ±

has L(0)-weight 1
2 .

The weight 1 subspace of V is V1 = Ca, for normalized Heisenberg
bosonic vector a = ψ+(−1)ψ−(−1)1, conformal vector, and
Virasoro grading operator are

[a(m), a(n)] = mδm,−n,

ω =
1
2
a(−1)21,

L(0) =
a(0)2

2
+
∑
n>0

a(−n)a(n).
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Genus One Super Trace Functions

We define the genus one partition function for the VOSA by the
supertrace

Z
(1)
V (τ) = STrV (qL(0)− 1

24 ) = TrV (σqL(0)− 1
24 ) = q−

1
24

∏
n≥0

(1−qn+ 1
2 )2,

where σu = e2πiwt(u)u.
More generally, we can construct a σg-twisted module Mσg for any
automorphism g = e2πiβa(0) generated by the Heisenberg state
a ∈ V1.
We also introduce a second automorphism h = e2πiαa(0) and define
the orbifold σg-twisted trace by

Z
(1)
V

[
h
g

]
(q) = STrMσg(hq

L(0)− 1
24 ),

to find for θ = e−2πiα,

Z
(1)
V

[
h
g

]
(q) = q(β+1/2)2/2−1/24

∏
l≥1

(1− θ−1ql−β−1)(1− θql+β).
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Genus One 1-Point Functions

Each orbifold 1-point function can found from a generalized Zhu
reduction formulas as a determinant.

Theorem (Mason-Tuite-Z)

For a Fock vector
Ψ[k, l] = ψ+[−k1] . . . ψ+[−kn]ψ−[−l1] . . . ψ−[−ln]1,

Z
(1)
V

[
h
g

]
(Ψ[k, l], q) = det

(
C
[
θ
φ

])
Z

(1)
V

[
h
g

]
(q),

where for i, j = 1, 2, . . . , n

C
[
θ
φ

]
(i, j) = C

[
θ
φ

]
(ki, lj , τ).
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Genus One n-Point Functions

In general, we can define the genus one orbifold n-point function
for v1, . . . , vn ∈ V by

Z
(1)
V

[
h
g

]
((v1, z1), . . . , (vn, zn); q)

≡ STrMσg

(
h Y (v1, z1) . . . Y (vn, zn) qL(0)− 1

24

)
= Z

(1)
V

[
h
g

]
(Y [v1, z1].Y [v2, z2] . . . Y [vn, zn].1, q).

Every orbifold n-point function can be computed using generalized
Zhu reduction formulas in terms of a determinant with entries
arising from the basic 2-point function for ψ+, ψ− [Mason-Tuite-Z].
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Zhu Reduction Formula

To reduce an n-point function to a sum of n− 1-point functions
we need:

the supertrace property:

STr(AB) = p(A,B)STr(BA), p(A,B) = (−1)p(A)p(B),

Borcherds commutation formula:

[a(m), Y (b, z)] =
∑

j≥0

(
m

j

)
Y (a(j)b, z)zm−j ,

an expansion for P1-function:

P1

[
θ
φ

]
(x− y, τ) =

1
x− y

+
∑
k,l≥1

C

[
θ
φ

]
(k, l)xk−1yl−1.
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Generating Function

Generating two-point function (for (θ, φ) 6= (1, 1)) is given by

Z
(1)
V

[
h
g

]
((ψ+, z1), (ψ−, z2); q) = P1

[
θ
φ

]
(z1−z2, q) Z(1)

V

[
h
g

]
(q).

Theorem (Mason-Tuite-Z)

Z
(1)
V

[
h
g

]
((v1, z1), . . . , (vn, zn); q) = Z

(1)
V

[
h
g

]
(q) detM.
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Genus One n-Point Functions

Theorem (Mason-Tuite-Z)

For n Fock vectors Ψ(a) = Ψ(a)[−k(a);−l(a)] and

Ψ(a)
h = Ψ(a)[−k(a);−l(a)]h for k(a) = k

(a)
1 , . . . k

(a)
sa and

l(a) = l
(a)
1 , . . . l

(a)
ta with a = 1 . . . n. Then for (θ, φ) 6= (1, 1) the

corresponding n-point functions are non-vanishing provided
n∑

a=1
(sa − ta) = 0, and

Z
(1)
V

[
f
g

]
((Ψ(1), z1), . . . , (Ψ(n), zn); τ)

= Z
(1)
V,h(f ; (Ψ(1)

h , z1), . . . , (Ψ
(n)
h , zn); τ)

= ε detM. Z
(1)
V,h(f ; τ).

Alexander Zuevsky VOSAs on a Riemann Surface



Here M is the block matrix

M =


C(11) D(12) . . . D(1n)

D(21) C(22) . . . D(2n)

...
. . .

...

D(n1) . . . C(nn)

 ,

with

C(aa)(i, j) = C

[
θ
φ

]
(k(a)

i , l
(a)
j , τ), (1 ≤ i ≤ sa, 1 ≤ j ≤ ta),

for sa, ta ≥ 1 with 1 ≤ a ≤ n and

D(ab)(i, j) = D

[
θ
φ

]
(k(a)

i , l
(b)
j , τ, zab), (1 ≤ i ≤ sa, 1 ≤ j ≤ tb),

for sa, tb ≥ 1 with 1 ≤ a, b ≤ n and a 6= b. ε is the sign of the
permutation associated with the reordering of ψ± to the
alternating ordering.
Furthermore, the n-point function (1) is an analytic function in za
and converges absolutely and uniformly on compact subsets of the
domain |q| < |qzab

| < 1.
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The Genus Two Fermionic Partition Function

Following the definition for the bosonic VOA we define for ha, ga

Z(2)

[
h
g

]
(q1, q2, ε) =

∑
m∈ 1

2
Z

εm
∑

u∈V[m]

Z(1)

[
h1

g1

]
(u, q1)Z(1)

[
h2

g2

]
(ū, q2).

The inner sum is taken over any V[m] basis and ū is dual to u with
respect to the Li-Zamolodchikov square bracket metric.

Z
(1)
V

[
ha

ga

]
(u, qa) is the genus one orbifold 1-point function.
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Recall that the non-zero 1-point functions arise for Fock vectors

Ψ[k, l] = ψ+[−k1] . . . ψ+[−kn]ψ−[−l1] . . . ψ−[−ln]1,

m = wt Ψ[k, l] =
∑

1≤i≤n

(ki + li + 1),

Z
(1)
V

[
h
g

]
(Ψ[k, l], q) = det

(
C
[
θ
φ

])
Z

(1)
V

[
h
g

]
(q).

The Li-Zamolodchikov metric dual to the Fock vector is

Ψ[k, l] = (−1)nΨ[l,k].
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Recalling the infinite matrix Q we find

Theorem (Tuite-Z)

(a) The genus two orbifold partition function is

Z(2)

[
h
g

]
(q1, q2, ε) = Z(1)

[
h1

g1

]
(q1)Z(1)

[
h2

g2

]
(q2) det(I−Q),

(b) Z(2)

[
h
g

]
(q1, q2, ε) is holomorphic on the domain Dε,

(c) Z(2)

[
h
g

]
(q1, q2, ε) has natural modular properties under the

action of G.
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Bosonization

The genus one orbifold partition function can be alternatively
computed by decomposing the VOSA into Heisenberg modules
M ⊗ em indexed by a(0) integer eigenvalues m, i.e., a Z lattice,

Z

[
h
g

]
(τ) =

∑
m∈Z

(−1)me2πimαTrM⊗em(qL(0)+ 1
2
(β+ 1

2
)2−(β+ 1

2
)m− 1

24 )

=
e2πi(α+1/2)(β+1/2)

η(τ)
ϑ

[
−β + 1

2
α+ 1

2

]
(τ).

Comparing to the fermionic product formula we obtain the
standard Jacobi triple product formula:∏

n>0

(1− qn)(1 + zqn−1)(1 + z−1qn) =
∑
m∈Z

zmqm(m−1)/2.
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The Genus Two Jacobi Triple Product Formula

The genus two partition function can similarly be computed in the
bosonized formalism to obtain a genus two version of the Jacobi
triple product formula for the genus two Riemann theta function
[Mason-Tuite-Z]

Z(2)

[
h
g

]
(q1, q2, ε) = Θ(2)

[
a
b

]
(Ω)Z(2)

M (q1, q2, ε),

for an appropriate character valued genus two Riemann theta
function

Θ(2)

[
a
b

]
(Ω) =

∑
m∈Z2

eiπ(m+a).Ω.(m+a)+2πi(m+a).b.

Comparing with the fermionic result we thus find that on Dε

Θ(2)

[
a
b

]
(Ω)

ϑ

[
a1

b1

]
(τ1)ϑ

[
a2

b2

]
(τ2)

= det(I −A1A2)1/2 det(I −Q).
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Fay’s Trisecant Identity

In a similar fashion we can compute the general 2n-generating

function G
(1)
2n,h in the bosonic setting to obtain:

Theorem (Tuite-Z)

G
(1)
2n,h(f ;x1, . . . , xn; y1, . . . , yn; τ)

=
e2πi(α+1/2)(β+1/2)

η(τ)
ϑ

[
−β + 1

2
α+ 1

2

]( n∑
i=1

(xi − yi), τ

)

·

∏
1≤i<j≤n

K(1)(xi − xj , τ)K(1)(yi − yj , τ)∏
1≤i,j≤n

K(1)(xi − yj , τ)
.
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Comparing this to fermionic expressions for (θ, φ) 6= (1, 1) we
obtain the classical Frobenius elliptic function version of Fay’s
Generalized Trisecant Identity [Fay]:

Corollary (Tuite-Z)

For (θ, φ) 6= (1, 1) we have

det(P) =
ϑ

[
−β + 1

2
α+ 1

2

](
n∑

i=1
(xi − yi), τ

)
ϑ

[
−β + 1

2
α+ 1

2

]
(0, τ)

·

Q

1≤i<j≤n

K(1)(xi−xj ,τ)K(1)(yi−yj ,τ)

Q

1≤i,j≤n

K(1)(xi−yj ,τ)
.
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Corollary (Tuite-Z)

For (θ, φ) = (1, 1),

det(P̃) = −K(1)

(
n∑

i=1

(xi − yi), τ

)

·

∏
1≤i<j≤n

K(1)(xi − xj , τ)K(1)(yi − yj , τ)∏
1≤i,j≤n

K(xi − yj , τ)
,

with

P̃ =


P1(x1 − y1, τ) . . . P1(x1 − yn, τ) 1

...
. . .

...
P1(xn − y1, τ) P1(xn − yn, τ) 1

1 . . . 1 0

 .
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Generalized Fay’s Trisecant Identity

We may generalize these identities using [Mason-Tuite]. Consider
the general lattice n-point function: [Tuite-Z] For integers
mi, nj ≥ 0 satisfying

∑r
i=1mi =

∑s
j=1 nj , we have

Z
(1)
V (f ; (1⊗em1 , x1), . . . (1⊗emr , xr), (1⊗e−n1 , y1), . . . (1⊗e−ns , ys); τ)

=
e2πi(α+1/2)(β+1/2)

η(τ)
ϑ

[
−β + 1

2
α+ 1

2

] r∑
i=1

mixi −
s∑

j=1

njyj , τ


∏

1≤i<k≤r

K(xi − xk, τ)mimk
∏

1≤j<l≤s

K(yj − yl, τ)njnl∏
1≤i≤r,1≤j≤s

K(xi − yj , τ)minj
.
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Comparing this to the expression for n-point functions we obtain a
new elliptic generalization of Fay’s Trisecant Identity:

Corollary (Tuite-Z)

For (θ, φ) 6= (1, 1) we have

det(M) =
ϑ

[
−β + 1

2
α+ 1

2

](
r∑

i=1
mixi −

∑s
j=1 njyj , τ

)
ϑ

[
−β + 1

2
α+ 1

2

]
(0, τ)

·

∏
1≤i<k≤r

K(xi − xk, τ)mimk
∏

1≤j<l≤s

K(yj − yl, τ)njnl∏
1≤i≤r,1≤j≤s

K(xi − yj , τ)minj
.
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Here M is the block matrix

M =

 D(11) . . . D(1s)

...
. . .

...

D(r1) . . . D(rs)

 ,

with D(ab) the ma × nb matrix

D(ab)(i, j) = D

[
θ
φ

]
(i, j, τ, xa−yb), (1 ≤ i ≤ ma, 1 ≤ j ≤ nb),

for 1 ≤ a ≤ r and 1 ≤ b ≤ s, and D-functions are given by the
expansion

P1

[
θ
φ

]
(z + z1 − z2, τ) =

∑
k,l≥1

D

[
θ
φ

]
(k, l, z)zk−1

1 zl−1
2 .

A similar identity for (θ, φ) = (1, 1) generalizing (1) can also be
described.
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