Clustering and collective dynamics in atomic nuclei

Alexander Volya

Florida State University

Supported by the US Department of Energy Award number: DE-SC0009883

FSU FLORIDA STATE

SSNET'2024

Clustering in light nuclei

Clustering in light nuclei

New look into clustering

•Fundamental questions of current interest

- •Nature and emergence of cluster degrees of freedom
- •Role of clustering in nuclear structure: interplay with shapes and rotational dynamics
- •Threshold phenomena and decay processes: superradiance, particle decay, and electromagnetic transitions
- Cluster transfer reactions
- •Broad, overlapping alpha resonances.

•Revisiting classical ideas with advanced tools and techniques.

New look into clustering

•Fundamental questions of current interest

- •Nature and emergence of cluster degrees of freed
- Role of clustering in nuclear structure: interplay wir dynamics
- Threshold phenomena and decay processes: supe electromagnetic transitions
- •Cluster transfer reactions
- •Broad, overlapping alpha resonances.

•Revisiting classical ideas with advanced tools and tech

Selected recent clustering studies

New experimental techniques

Clustering in atomic nuclei

- Norm kernel and blocking
- •Clustering in ground states
- •Role of valence particles
- •Emergence of cluster degrees of freedom, and entanglement
- •Experimental results.
- •Learning from $N \neq Z$ nuclei

Center-of-Mass boosts

$$\Psi_{n\ell m} = \phi_{n\ell m}(\mathbf{R}) \, \Psi'$$

K Kravvaris and A. Volya, Journal of Phys, Conf. Proc. 863, 012016 (2017)

Clustering reaction basis channel

(basis states for clustering)

Recoil Recoupling

• Recoupling is done with Talmi-Moshinsky brackets

$$\Phi_{n\ell m} = \mathcal{A}\left\{\phi_{000}(\mathbf{R})\phi_{n\ell m}(\boldsymbol{\rho})\Psi^{\prime(1)}\Psi^{\prime(2)}\right\}$$

Configuration interaction approach and clustering

Traditional shell model configuration m-scheme

Cluster configuration

K. Kravvaris and A. Volya, Clustering in structure and reactions using configuration interaction techniques, Phys. Rev. C 100, 034321 (2019).

Volya and Yu. M. Tchuvil'sky, Phys. Rev. C 91, 044319 (2015).

Yu. F. Smirnov and Yu. M. Tchuvil'sky, Phys. Rev. C 15, 84 (1977).

M. Ichimura, A. Arima, E. C. Halbert, and T. Terasawa, Nucl. Phys. A 204, 225 (1973).

O. F. Nemetz, V. G. Neudatchin, A. T. Rudchik, Yu. F. Smirnov, and Yu. M. Tchuvil'sky, Nucleon Clusters in Atomic Nuclei and Multi-Nucleon Transfer Reactions (Naukova Dumka, Kiev, 1988), p. 295.

Quartet that corresponds to alpha cluster

n	X^2	(8,0)	(4,2)	(0,4)	$(2,\!0)$
4	0.02848	1.0	0.0	0.0	0.0
3	0.00697	0.561658	0.438338	0.0	0.0
2	0.00169	0.549804	0.0451847	0.3363	0.0636439
1	0.00018	0.0693304	0.735878	0.0134005	0.147418
0	0.00011	0.0693304	0.261291	0.0990471	0.0384533

L = S = T = 0 (λ, μ) = (8,0), (4,2), (0,4), or (2,0)

In light nuclei SU(3) symmetry plays significant role for clustering and deformation Norm kernel and Pauli blocking plays an important role. Effective operator for alpha cluster is significantly modified.

Classic Example: ²⁴Mg, 8 nucleons in sd-shell

USD realistic interaction

Ground state J=T=0 breakdown in SU(3) irreps

Understanding alpha clustering in sd-shell nuclei

T. Carey, P. Roos, N. Chant, A. Nadasen, and H. L. Chen, Phys. Rev. C 23, 576(R) (1981).
 T. Carey, P. Roos, N. Chant, A. Nadasen, and H. L. Chen, Phys. Rev. C 29, 1273 (1984).
 N. Anantaraman and et al., Phys. Rev. Lett. 35, 1131 (1975).
 W. Chung, J. van Hienen, B. H. Wildenthal, and C. L. Bennett, Phys. Lett. B 79, 381 (1978).
 B. A. Brown and W. A. Richter, Phys. Rev. C 74, 034315 (2006)

Bosonic nature of 4-nucleon operators non-orgothogonality

If $\, \Phi^{\dagger} \,$ is thought of as being a boson then $\, \Phi \Phi^{\dagger} = 1 + N_b \,$

$$|\Psi_D\rangle = |\Phi\rangle \quad \langle \Phi_D | \hat{\Phi} \hat{\Phi}^{\dagger} | \Psi_D \rangle = \langle 0 | \hat{\Phi} \hat{\Phi} \hat{\Phi}^{\dagger} \hat{\Phi}^{\dagger} | 0 \rangle = 2$$
$$L = S = T = 0$$

Φ	Ψ_P	$\left \langle\Psi_P \hat{\Phi}^\dagger \Psi_D ight ^2$	$\langle 0 \hat{\Phi}\hat{\Phi}\hat{\Phi}^{\dagger}\hat{\Phi}^{\dagger} 0 angle$
$(p)^4 (4,0)$	$(p)^8 (0,4)$	1.42222^{\star}	1.42222
$(sd)^4 (8,0)$	$(sd)^8 (8,4)$	0.487903	1.20213
$(fp)^4 (12,0)$	$(fp)^8 (16,4)$	0.292411	1.41503
$(sdg)^4 (16,0)$	$(sdg)^{8}(24,4)$	0.209525	1.5278

* For p-shell the result is known analytically 64/45

Bosonic nature of 4-nucleon operators non-orgothogonality

If $\, \Phi^{\dagger} \,$ is thought of as being a boson then $\, \Phi \Phi^{\dagger} = 1 + N_b \,$

$$|\Psi_D\rangle = |\Phi\rangle \quad \langle \Phi_D | \hat{\Phi} \hat{\Phi}^{\dagger} | \Psi_D \rangle = \langle 0 | \hat{\Phi} \hat{\Phi} \hat{\Phi}^{\dagger} \hat{\Phi}^{\dagger} | 0 \rangle = 2$$
$$L = S = T = 0$$

Φ	Ψ_P	$\left \langle\Psi_P \hat{\Phi}^\dagger \Psi_D ight ^2$	$\langle 0 \hat{\Phi}\hat{\Phi}\hat{\Phi}^{\dagger}\hat{\Phi}^{\dagger} 0 angle$
$(p)^4 (4,0)$	$(p)^8 (0,4)$	1.42222^{\star}	1.42222
$(sd)^4 (8,0)$	$(sd)^8 (8,4)$	0.487903	1.20213
$(fp)^4 (12,0)$	$(fp)^8 (16,4)$	0.292411	1.41503
$(sdg)^4 (16,0)$	$(sdg)^8 (24,4)$	0.209525	1.5278

* For p-shell the result is known analytically 64/45

Effective operators (alphas) are not ideal bosons Cluster configurations are not orthogonal and not normalized

Resonating group method

Resonating group method and reactions

K. Kravvaris and A. Volya, Clustering in structure and reactions using configuration interaction techniques, Phys. Rev. C 100, 034321 (2019).

Clustering in the ground states ${}^{12}C({}^{20}Ne, {}^{16}O){}^{16}O$

E. Harris, et al. Quantifying clustering in the ground states of ¹⁶O and ²⁰Ne, in preparation for publication

Clustering in the ground states

 $^{12}C(^{20}Ne,^{16}O)^{16}O$

- A. C. Dreyfuss et al., Phys. Rev. C 102, 044608 (2020).
- K. Kravvaris and A. Volya, Phys. Rev. C 100, 034321 (2019).
- E. Epelbaum et al., Phys. Rev. Lett. 109, 252501 (2012).
- D. K. Nauruzbayev et al., Phys. Rev. C 96, 014322 (2017).

E. Harris, et al. Quantifying clustering in the ground states of ¹⁶O and ²⁰Ne

Clustering in the ground states ${}^{12}C({}^{20}Ne, {}^{16}O){}^{16}O$

- A. C. Dreyfuss et al., Phys. Rev. C 102, 044608 (2020).
- K. Kravvaris and A. Volya, Phys. Rev. C 100, 034321 (2019).
- E. Epelbaum et al., Phys. Rev. Lett. 109, 252501 (2012).
- D. K. Nauruzbayev et al., Phys. Rev. C 96, 014322 (2017).

Clustering in the ground states ¹²C(²⁰Ne,¹⁶O)¹⁶O

18F and 18O, pn and nn pairs and clustering

- · Significant effect of nucleon pair on alpha blocking
- · Low ground state alpha SF
- · Clear clustering in excited states
- Core spin coupling to orbital motion.

Clustering, interaction with continuum

Near-threshold behavior has a significant impact on structure, reactions, and various key phenomena.

- V. Z. Goldberg, A. K. Nurmukhanbetova, A. Volya, D. K. Nauruzbayev, G. E. Serikbayeva, and G. V. Rogachev, Phys. Rev. C 105, 014615 (2022).
- A. Volya, V. Z. Goldberg, A. K. Nurmukhanbetova, D. K. Nauruzbayev, and G. V. Rogachev, Phys. Rev. C 105, 014614 (2022).
- A. Volya, M. Barbui, V. Z. Goldberg, and G. V. Rogachev, Commun Phys 5, 1 (2022).

Remarks and outlook

- Microscopic studies of clustering allow for quantitative evaluation of long standing questions related to identical particles, entanglement, and emergence of cluster degrees of freedom
- Advances in experimental techniques and studies for $N \neq Z$ nuclei provide sensitive tests for theory.

Main publications:

- E. Harris, et al. Quantifying clustering in the ground states of 16O and 20Ne
- A.K. Nurmukhanbetova, et al, EPJ in press, EPJ Web Conf. 311, 22 (2024).
- N. Sandulescu, M. Sambataro, and A. Volya, EPJ Web Conf. 292, 1003 (2024).
- K Kravvaris and A. Volya, Phys. Rev. Lett, 119(6), 062501 (2017); Journal of Phys 863, 012016 (2017), Phys. Rev. C 100 (2019) 034321.
- V. Z. Goldberg, et al., Phys. Rev. C 105 (2022) 014615.
- A. Volya, M. Barbui, V. Z. Goldberg, and G. V. Rogachev, Commun Phys 5, 1 (2022).
- V. Zelevinsky and A. Volya, Mesoscopic Nuclear Physics: From Nucleus to Quantum Chaos to Quantum Signal Transmission (World Scientific, 2023).

Principal collaborators:

M. Barbui, V. Z. Goldberg, E. Harris, Y. Lashko, K.D. Launey, D. Lee, K. Liguori, K. Kravvaris, A. Nurmukhanbetova, G. V. Rogachev, M. Sambataro, N. Sandulescu, V. Zelevinsky

Funding Acknowledgements: Funding: U.S. DOE contract DE-SC0009883.

www.volya.net github.com/alvolya