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Many-Body truncation

* Comparison to PGCM-PT * Strong centroid dependence ~ 10 %
* Only tested for low-lying exc * Dispersion relative error ~ 20 %
* Correlated to SRG and generator coords *  Truncates both H and many-body
i\/ . Chiral Order E———
dTI X 1V > nucl-th > arXiv:2407.01325 " Good overall convergence
Va «  Centroid relative error ~ 2 % 1 +  Empirical knowledge, two coords r and B,
«  Dispersion relative error ~ 10 % oy + More systematic choice needed
Nuclear Theory Harmonic Oscillator width Mo 6 Three-body treatment
| * Good overall convergence —4 * NO2B approximation
. +  Centroid relative error ~ 2 % . R * 1-2% uncertainty in low-lying exc
[Submitted on 1 Jul 2024] |+ pispersion relative error~ 6% T O . Nolrmcd :L«;.;nl rvso:\an(cs
= H S = i s = HY Finite Basis Size g Hamiltonian parameters
Ab initio description of monopole resonances in light- and medium-mass nuclei: e R et
H H H - H H * Centroid relative error ~ 1% * Few interactions compared
IV. Angular momentum projection and rotation-vibration coupling i il gl
* @y MOt studied (14 safe for GS) * Need for emulators (EC)
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Summary of the uncertainty budget. In green are indicated the uncertainties that were
thoroughly investigated. In yellow are those that could only be touched upon. Eventually,
boxes in red correspond to those that could at best be estimated from previous but
somewhat different works or not estimated at all
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Hartree-Fock wave-functions often lack symmetries possessed by the Hamiltonian.
It is often said that the Random Phase Approximation (RPA) restores the missing
symmetries. Since the RPA does not readily lead to explicit wave-functions, it is not a
trivial matter to verify this assertion. We analyse the situation, and show that, while RPA
restores symmetry in some respects, it does not do so completely. Besides the normal RPA,
we discuss the generalisation of RPA that describes modes in isobars of the given nucleus.
This is needed to enable us to discuss the case of isospin symmetry, which is analysed in
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DIFFERENT FLAVOURS OF SYMMETRY BREAKING AND RESTORATION

(Q)RPA GCM

Harmonic fluctuations around

deformed HF(B)

Large amplitudes superposition
of def. HF(B) states

)\

<

[PRC (2024) 109, 044315]
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Backup slides



Setting

RPA response stability wrt basis variations

« HO basis convergence

* Global stability

* High-energy fragmentation (continuum)

* Tplh RPA basis

+ Rapid convergence

e Ecut=100 MeV

AMP Benchmarks

« Test on aspherical system (“He)

« AMP identity resolution accurately satisfied

— IS RPA

“He
20| --- IS PAV RPA ||
= ! IV RPA
g I -- IV PAV RPA
T |
=10 i
S
O L J.—"k\‘~ L /\\
0 10 20 30 40

W [MeV]

50

T 200
>
()
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| |
2*Mg RPA
[ | I
- Nsh — 9
Nsh — 11
‘\ | . |
10 20 30 40 50

_A@h IEHE‘[hde\/]7"[fﬂﬂ ﬁ

7 -195.65 2.991 0.378
9 -196.21 3.009 0.392
11 -196.93 3.011 0.383
13 -197.15 3.016 0.390

B
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Extended derivation

Standard RPA derivation
(n|T|RPA) = (RPA|TQ! |RPA)
= (RPA| [T, Q}] |RPA)
~ (HF| [T, Q! ] |HF)

= Z{ ph h|T>\M|p> + <p|T>\,u|h>}

Projected RPA derivation

(RPA[T, P, — i In) = (RPA|T, Py, _, QF IRPA)
= (RPA|T). Pity 1k Qf — @ Pity— e Tau RPA)
~ <HF|T>\MPI‘£0—M,KQIL - QILPI%O—M,KTAM|HF>
= XPM(HF|Tx, Py, . xahanHF) + YPM(HF|a} a, Py, xTx,[HF)

ph

Reduced transition amplitudes

1
Jo A J J iBJy 1
_ J K ph ) ph 0 Y
(RPA||T)||n) = (2Jy + 1)NgN,, 0= 0%&:%: [XxP ;PR <—K0 Ky —u) /_ld(cosﬁ) . _ i (B)(HF| Ty .e?7v al ay [HF)
L _1/2 . —1/2
Ny = [ / 1d(cos/a’) digo’Ko(ﬁ)<HF\ewa|HF>] No=| > (XpXJ0 =YYy / ld(cosﬁ) . 1 (B)(HF|a}, a, v al ay |HF)
N p,h;p’,h’ B




Comparison to rotational transition density

Rotational state

Anomalous phonon

150°

8p [fm=3]

180°

210°

Overlap maximised at « ~ 24°
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Rotational overlap
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PAV RPA convergence

Soo [fm*MeV—1]

Sy [fm*MeV—1]
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PAV RPA convergence

| (RPA|P?|w) |2
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PAV RPA convergence
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