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Background: Within the energy density functional (EDF) approach, the use of mean-field wave functions
deliberately breaking (some) symmetries of the underlying Hamiltonian is an efficient and widely utilized way to
incorporate static correlations. However, the restoration of broken symmetries is eventually mandatory to recover
the corresponding quantum numbers and to achieve a more precise description of nuclear properties.
Purpose: While symmetry-restored calculations are routinely performed to study ground-state properties and
low-lying excitations, similar applications to the nuclear response are essentially limited to either formal studies
or to schematic models. In the present paper, the effect of angular momentum restoration on the monopole and
quadrupole responses of doubly open-shell nuclei is investigated.
Methods: Based on deformed Skyrme-randomphaseapproximation (RPA) calculations, the exact angular mo-
mentum projection (AMP) is implemented in the calculation of the multipole strength functions, thus defining
a projection after variation (PAV-RPA) scheme. The method is employed for the first time in a realistic study to
investigate the effect of AMP on the coupling of monopole and quadrupole modes in 24Mg resulting from its
intrinsic deformation.
Results: The monopole PAV-RPA response function shows, in addition to the giant resonance peaks, a tremen-
dous amount of strength in the low-energy part whose properties and nature are investigated and discussed. In
the quadrupole channel, the AMP leads to a suppression of all the strength but the one corresponding to the
isoscalar giant quadrupole resonance.
Conclusions: The nature of the anomalous low-lying monopole strength is interpreted as a contamination of
the excited states via the coupling to the (noninfinitesimal) rotational motion in deformed RPA phonons. Such a
spurious strength was also observed in projected generator coordinate method (PGCM) calculations based on a
similar PAV approach, but was shown to disappear in its full variation after projection (VAP) counterpart. While
the spurious strength could be properly subtracted in the present work, this work motivates the implementation
of the full VAP-RPA in the future.

DOI: 10.1103/PhysRevC.109.044315

I. INTRODUCTION

In the realms of the nuclear energy density functional
method [1–3] and of ab initio methods [4–10], allowing
simple wave functions (e.g., Slater determinants, Bogoliubov
vacua, or a superposition of those) to break symmetries
of the Hamiltonian is an efficient way to grasp so-called
static correlations in open-shell systems. The latter typically
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substantiate as broken SU(2) (i.e., rotational) and U(1) (i.e.,
global-gauge) symmetries associated with the conservation
of total angular momentum and particle number, respectively.
Still, it is mandatory to eventually restore such symmetries
when seeking a good approximation to the exact solution.
This is typically achieved by performing angular momen-
tum (AMP) and particle number (PNP) projections of the
symmetry-breaking state. The balance between symmetry
breaking and restoration is pivotal to capture the rich diversity
of nuclear phenomena, offering profound insights into the
complex nature of atomic nuclei. This question is at the heart
of various recent developments in ab initio many-body theory
[11–16].

Although symmetry-restoration techniques have been em-
ployed for a long time in EDF studies of ground-state
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5

Nsh EHF [MeV] r [fm] �
7 -195.65 2.991 0.378
9 -196.21 3.009 0.392
11 -196.93 3.011 0.383
13 -197.15 3.016 0.390

TABLE I: Hartree-Fock ground-state energy EHF, root mean square radius r and deformation � of the HF
vacuum adopted for the Nsh study in 24Mg.

III. NUMERICAL DETAILS

Equations (11), (12) and (13) have been implemented in such a way to accommodate results from RPA on top
of HF in an harmonic oscillator basis. Such implementation is based on a series of basis transformations, going
from the elementary matrix elements of Jy in the spherical harmonic oscillator basis to the complicated matrix
elements. Details can be found in Ref. [21]. The implementation was validated through several steps, including the
application to a spherical system, that is 4He, where the projected and the original strengths were found to coincide
up to numerical precision.

Results are presented in this work for 24Mg, using the SkM⇤ Skyrme EDF [22]. The QRPA code originally
introduced in Ref. [23] is used. The code is built for open-shell systems and it is based on the HFB solution
obtained in a harmonic oscillator (HO) basis via the code HFBTHO in the version of Ref. [24]. It was used, without
projection, in Ref. [25] for calculations of the monopole and quadrupole strengths in Molybdenum isotopes. The
HO basis is characterised by the value of ~! = 1.2 ⇥ 41/A1/3 [MeV]. The axial quadrupole deformation parameter,
defined in this work as [26]
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hQ20i⇡ + hQ20i⌫
hr2i⇡ + hr2i⌫

, (16)

is employed to generate the reference state of the QRPA solution. Convergence with respect to the number of major
shells Nsh included in the HO basis was studied. In the present case, a non-superfluid (i.e. HF) solution for 24Mg
was found for all considered Nsh, whose numerical details are given in Tab. I. Accordingly, the QRPA formalism
reduces to the RPA. The RPA problem is solved in the standard matrix form
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RPA eigenvalues and eigenvectors are found by using diagonalization techniques for sparse matrices. In the present
work, RPA equations are solved for K = 0. The strength associated with the standard monopole and quadrupole
operator, i.e.

P
i r

2
i and

P
i r

2
i Y20 respectively, are then computed. The strength’s stability against changes of the

HO and RPA p-h basis dimension is investigated. The p-h basis dimension Ecut is defined in terms of the upper
value of the energies of the K = 0 p-h pairs included in the calculation. The convergence of the RPA spectra with
respect to Nsh and Ecut variations is presented in Fig. 1. Note that here, and in the following figures, the discrete
RPA strength is averaged using Lorentzian functions with a width of � = 0.5 MeV.

The convergence with respect to the harmonic oscillator basis size Nsh is first addressed for a fixed value of the
maximal ph-excitation energy value Ecut = 100 MeV. The original RPA response displays a converging pattern in
the quadrupole channel, as seen in the bottom panel of Fig. 1 (left). The low-energy component (below ⇠20 MeV)
of the monopole response also converges for relatively small Nsh. However, the high-energy component (above
⇠20 MeV) shows a strong dependence on the dimension of the HO basis and the fragmentation is still increasing
for the largest model space employed. This phenomenon is attributed to high-lying excitations involving states in
the continuum, such that details of single-particle configurations strongly a↵ect the global response.

The dependence on the ph excitation energy cut-o↵ Ecut is then addressed for a fixed number of harmonic
oscillator shells Nsh = 11. Monopole and quadrupole RPA responses are displayed in Fig. 1 (right). A converging
pattern is observed, inferring that a cuto↵ of Ecut =80 MeV is already su�cient to produce a reliable linelshape
for the main peaks, whereas results for Ecut =100 MeV and Ecut =120 MeV being practically identical.

Final results, unless otherwise specified, correspond to Nsh = 11 and Ecut =100 MeV in the following.

IV. RESULTS AND DISCUSSION

In order to understand the e↵ects of AMP on the RPA strength, its implications on the HF reference state are also
addressed. The J-components of the HF ground state are displayed in Fig. 2 and are in agreement with Ref. [27],
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II. FORMALISM

A. Angular Momentum Projection

Basic formulas for AMP can be found in textbooks [8]. A brief summary is here provided for the reader’s
convenience. Let us start introducing a system which is fully described by the quantum numbers J , M and n, i.e.
by the state |JM,ni. Here J refers to the total angular momentum, M to its z-projection in the laboratory frame
O and n collects the remaining quantum numbers necessary to uniquely define the quantum state. As the latter
index is not directly a↵ected in this discussion, it will be hereafter omitted for notation’s simplicity. A state |JMi
can be obtained by projecting all K z-projections of an arbitrary state | i onto the angular momentum values J

and M via the AMP operator [20]

P
J
MK =

2J + 1

8⇡2

Z
d⌦ DJ⇤

MK(⌦)R(⌦) , (1)

where D are the Wigner matrices and R the rotation operator. ⌦ labels here the three Euler angles (↵,�, �) that
describe any rotation in the 3D space. In the case of an axially-deformed nucleus | i has, as good quantum numbers
in the intrinsic frame O0, the projection K on the z0 axis and the parity ⇡, such that an ”e↵ective” ( why e↵ective?)
operator

P
J
MK =

2J + 1

2

Z +1

�1
d (cos�) d

J
MK(�)e�i�Ĵy (2)

is obtained, with � being the angle around the y-axis (perpendicular to the symmetry axis) and d is the corresponding
Wigner’s small d-matrix.

B. Projected multipole strength functions

In the present context, the interest is in projecting RPA states. Actually, not the RPA wavefunctions but only
the multipole strength function is indeed computable: thus, formulas shall be applied allowing the extraction of the
transition amplitude of multipole operators between projected states. Let us write the multipole operator as T�µ; if
axially-deformed systems are being considered, as it is the case here, the associated reduced matrix elements read

hJ1||T�||J2i =
(2J1 + 1)(2J2 + 1)

2
N1N2

X

µ

(�)J1�K1

✓
J1 � J2

�K1 µ K1 � µ

◆

⇥
Z 1

�1
d(cos�) dJ2

K1�µ,K2
(�)h 1|T�µe

i�Jy | 2i , (3)

where the normalsing constants Ni are provided by

Ni =


2Ji + 1

2

Z 1

�1
d(cos�) dJi

Ki,Ki
(�)h i|ei�Jy | ii

��1/2

. (4)

If transition amplitudes are being computed with respect to the ground state of the system, then | 1i is assumed
to carry a given K

⇡ = K
⇡0
0 . This is actually 0+ for even-even nuclei but the more general notation is being kept.

The final state | 2i is a generic excited state of the theory of interest, carrying a given K
⇡. In what follows, let us

first discuss the projection implications in the context of the Tamm-Danco↵ Approximation (TDA), before moving
to RPA. The two theories are discussed separately in the two folling sections.

1. Tamm-Danco↵ Approximation

Within the TDA the ground state coincides with the HF ground state. Consequently, the AMP implied by the
previous formulas is of easier derivation. A generic TDA state |ni results from the application of a phonon operator
acting on the HF ground state according to

|ni = Q
†
n|HFi ⌘

X

ph

X
ph
a
†
pah|HFi , (5)
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II. FORMALISM

A. Angular Momentum Projection

Basic formulas for AMP can be found in textbooks [8]. A brief summary is here provided for the reader’s
convenience. Let us start introducing a system which is fully described by the quantum numbers J , M and n, i.e.
by the state |JM,ni. Here J refers to the total angular momentum, M to its z-projection in the laboratory frame
O and n collects the remaining quantum numbers necessary to uniquely define the quantum state. As the latter
index is not directly a↵ected in this discussion, it will be hereafter omitted for notation’s simplicity. A state |JMi
can be obtained by projecting all K z-projections of an arbitrary state | i onto the angular momentum values J

and M via the AMP operator [20]

P
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MK =

2J + 1

8⇡2

Z
d⌦ DJ⇤

MK(⌦)R(⌦) , (1)

where D are the Wigner matrices and R the rotation operator. ⌦ labels here the three Euler angles (↵,�, �) that
describe any rotation in the 3D space. In the case of an axially-deformed nucleus | i has, as good quantum numbers
in the intrinsic frame O0, the projection K on the z0 axis and the parity ⇡, such that an ”e↵ective” ( why e↵ective?)
operator

P
J
MK =

2J + 1

2

Z +1

�1
d (cos�) d

J
MK(�)e�i�Ĵy (2)

is obtained, with � being the angle around the y-axis (perpendicular to the symmetry axis) and d is the corresponding
Wigner’s small d-matrix.

B. Projected multipole strength functions

In the present context, the interest is in projecting RPA states. Actually, not the RPA wavefunctions but only
the multipole strength function is indeed computable: thus, formulas shall be applied allowing the extraction of the
transition amplitude of multipole operators between projected states. Let us write the multipole operator as T�µ; if
axially-deformed systems are being considered, as it is the case here, the associated reduced matrix elements read

hJ1||T�||J2i =
(2J1 + 1)(2J2 + 1)

2
N1N2

X

µ
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✓
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�K1 µ K1 � µ
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Z 1
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where the normalsing constants Ni are provided by

Ni =


2Ji + 1

2

Z 1
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d(cos�) dJi

Ki,Ki
(�)h i|ei�Jy | ii

��1/2

. (4)

If transition amplitudes are being computed with respect to the ground state of the system, then | 1i is assumed
to carry a given K

⇡ = K
⇡0
0 . This is actually 0+ for even-even nuclei but the more general notation is being kept.

The final state | 2i is a generic excited state of the theory of interest, carrying a given K
⇡. In what follows, let us

first discuss the projection implications in the context of the Tamm-Danco↵ Approximation (TDA), before moving
to RPA. The two theories are discussed separately in the two folling sections.

1. Tamm-Danco↵ Approximation

Within the TDA the ground state coincides with the HF ground state. Consequently, the AMP implied by the
previous formulas is of easier derivation. A generic TDA state |ni results from the application of a phonon operator
acting on the HF ground state according to

|ni = Q
†
n|HFi ⌘

X

ph

X
ph
a
†
pah|HFi , (5)

Rotation operator
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hJ1||T�||J2i =
(2J1 + 1)(2J2 + 1)

2
N1N2

X

µ

(�)J1�K1

✓
J1 � J2

�K1 µ K1 � µ

◆

⇥
Z 1

�1
d(cos�) dJ2

K1�µ,K2
(�)h 1|T�µe

i�Jy | 2i , (3)

where the normalsing constants Ni are provided by

Ni =


2Ji + 1

2

Z 1

�1
d(cos�) dJi

Ki,Ki
(�)h i|ei�Jy | ii

��1/2

. (4)

If transition amplitudes are being computed with respect to the ground state of the system, then | 1i is assumed
to carry a given K

⇡ = K
⇡0
0 . This is actually 0+ for even-even nuclei but the more general notation is being kept.

The final state | 2i is a generic excited state of the theory of interest, carrying a given K
⇡. In what follows, let us

first discuss the projection implications in the context of the Tamm-Danco↵ Approximation (TDA), before moving
to RPA. The two theories are discussed separately in the two folling sections.

1. Tamm-Danco↵ Approximation

Within the TDA the ground state coincides with the HF ground state. Consequently, the AMP implied by the
previous formulas is of easier derivation. A generic TDA state |ni results from the application of a phonon operator
acting on the HF ground state according to

|ni = Q
†
n|HFi ⌘

X

ph

X
ph
a
†
pah|HFi , (5)

Wigner small-d matrices Rotation operator
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Present work

• Exact Angular Momentum Projection (RPA)

• Focus on K=0 (monopole and quadrupole)

Standard assumptions

• Needle approximation for AMP

• RPA reinstates the missing symmetries to some extent

Projected states

PAV RPA
3

V the main conclusions are drawn. Perspecitves?
Section III, IV, V. In Sec. ... (list of Sections to be done at the end).

II. FORMALISM

A. Angular Momentum Projection

Basic formulas for AMP can be found in textbooks [8]. A brief summary is here provided for the reader’s
convenience. Let us start introducing a system which is fully described by the quantum numbers J , M and n, i.e.
by the state |JM,ni. Here J refers to the total angular momentum, M to its z-projection in the laboratory frame
O and n collects the remaining quantum numbers necessary to uniquely define the quantum state. As the latter
index is not directly a↵ected in this discussion, it will be hereafter omitted for notation’s simplicity. A state |JMi
can be obtained by projecting all K z-projections of an arbitrary state | i onto the angular momentum values J

and M via the AMP operator [20]

P
J
MK =

2J + 1

8⇡2

Z
d⌦ DJ⇤

MK(⌦)R(⌦) , (1)

where D are the Wigner matrices and R the rotation operator. ⌦ labels here the three Euler angles (↵,�, �) that
describe any rotation in the 3D space. In the case of an axially-deformed nucleus | i has, as good quantum numbers
in the intrinsic frame O0, the projection K on the z0 axis and the parity ⇡, such that an ”e↵ective” ( why e↵ective?)
operator

P
J
MK =

2J + 1

2

Z +1

�1
d (cos�) d

J
MK(�)e�i�Ĵy (2)

is obtained, with � being the angle around the y-axis (perpendicular to the symmetry axis) and d is the corresponding
Wigner’s small d-matrix.

B. Projected multipole strength functions

In the present context, the interest is in projecting RPA states. Actually, not the RPA wavefunctions but only
the multipole strength function is indeed computable: thus, formulas shall be applied allowing the extraction of the
transition amplitude of multipole operators between projected states. Let us write the multipole operator as T�µ; if
axially-deformed systems are being considered, as it is the case here, the associated reduced matrix elements read

hJ1||T�||J2i =
(2J1 + 1)(2J2 + 1)

2
N1N2

X

µ

(�)J1�K1

✓
J1 � J2

�K1 µ K1 � µ

◆

⇥
Z 1

�1
d(cos�) dJ2

K1�µ,K2
(�)h 1|T�µe

i�Jy | 2i , (3)

where the normalsing constants Ni are provided by

Ni =


2Ji + 1

2

Z 1

�1
d(cos�) dJi

Ki,Ki
(�)h i|ei�Jy | ii

��1/2

. (4)

If transition amplitudes are being computed with respect to the ground state of the system, then | 1i is assumed
to carry a given K

⇡ = K
⇡0
0 . This is actually 0+ for even-even nuclei but the more general notation is being kept.

The final state | 2i is a generic excited state of the theory of interest, carrying a given K
⇡. In what follows, let us

first discuss the projection implications in the context of the Tamm-Danco↵ Approximation (TDA), before moving
to RPA. The two theories are discussed separately in the two folling sections.

1. Tamm-Danco↵ Approximation

Within the TDA the ground state coincides with the HF ground state. Consequently, the AMP implied by the
previous formulas is of easier derivation. A generic TDA state |ni results from the application of a phonon operator
acting on the HF ground state according to

|ni = Q
†
n|HFi ⌘

X

ph

X
ph
a
†
pah|HFi , (5)

Wigner small-d matrices Rotation operator

Remark
For J=0 projection is a pure rotation

5

is obtained. The normalization factors from Eq. (4) are derived in the same way, providing

N0 =

Z 1

�1
d(cos�) dJ0

K0,K0
(�)hHF|ei�Jy |HFi

��1/2

, (12)

and

Nn =

2

4
X

p,h;p0,h0

�
X

n
phX

n
p0h0 � Y

n
phY

n
p0h0

� Z 1

�1
d(cos�) dJK,K(�)hHF|a†h0ap0e

i�Jya
†
pah|HFi

3

5
�1/2

. (13)

The strength from Eq. (11) is hereby referred to as PAV RPA strength. It is shown in App. A how Eq. (11) reduces
to Eq. (8) when the widely used needle approximation is invoked. (Eq. (8) is the standard RPA one, without
projection, isn’t it?)

C. Rotated Hartree-Fock state

As an additional element relevant for the following discussion a rotated version of the HF ground state is intro-
duced. In the monopole case, the matrix d

0
00 = 1, such that, as already evident from Eq. (1), the projector P

0
00

on J = 0 corresponds to the superposition of intrinsic states rotated over all the integration domain. For later
convenience, the state

|ROTi ⌘ NROTP
0
00|HFi = NROT

1

2

Z +1

�1
d (cos�) e

�i�Ĵy |HFi (14)

is introduced, with NROT a normalising constant enforcing the condition hROT|ROTi = 1. The overlap between
such rotational state and excited states is eventually introduced as

hROT|ni = NROThHF|P 0
00|ni . (15)

III. NUMERICAL DETAILS

Equations (11), (12) and (13) have been implemented in such a way to accommodate results from RPA on top
of HF in an harmonic oscillator basis. Such implementation is based on a series of basis transformations, going
from the elementary matrix elements of Jy in the spherical harmonic oscillator basis to the complicated matrix
elements. Details can be found in Ref. [21]. The implementation was validated through several steps, including the
application to a spherical system, that is 4He, where the projected and the original strengths were found to coincide
up to numerical precision.

Results are presented in this work for 24Mg, using the SkM⇤ Skyrme EDF [22]. The QRPA code originally
introduced in Ref. [23] is used. The code is built for open-shell systems and it is based on the HFB solution
obtained in a harmonic oscillator (HO) basis via the code HFBTHO in the version of Ref. [24]. It was used, without
projection, in Ref. [25] for calculations of the monopole and quadrupole strengths in Molybdenum isotopes. The
HO basis is characterised by the value of ~! = 1.2 ⇥ 41/A1/3 [MeV]. The axial quadrupole deformation parameter,
defined in this work as [26]

� ⌘
r

⇡

5

hQ20i⇡ + hQ20i⌫
hr2i⇡ + hr2i⌫

, (16)

is employed to generate the reference state of the QRPA solution. Convergence with respect to the number of major
shells Nsh included in the HO basis was studied. In the present case, a non-superfluid (i.e. HF) solution for 24Mg
was found for all considered Nsh, whose numerical details are given in Tab. I. Accordingly, the QRPA formalism
reduces to the RPA. The RPA problem is solved in the standard matrix form

✓
A B

�B
⇤ �A

⇤

◆✓
X

n

Y
n

◆
= En

✓
X

n

Y
n

◆
. (17)

RPA eigenvalues and eigenvectors are found by using diagonalization techniques for sparse matrices. In the present
work, RPA equations are solved for K⇡ = 0+. The strength associated with the standard monopole and quadrupole
operator, i.e.

P
i r

2
i and

P
i r

2
i Y20 respectively, are then computed. The strength’s stability against changes of the
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FIG. 2: J decomposition of the HF ground state in 24Mg (Nsh = 11)
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FIG. 3: Left: 24Mg monopole (upper panel) and quadrupole (lower panel) RPA responses (Nsh =11 and
Ecut = 100 MeV). Right: 24Mg monopole (upper panel) and quadrupole (lower panel) PAV RPA responses (left

axis) and associated rotational overlap from Eq. (15) (right axis) for the same set of parameters.

wave-function is spread over several (even) J ’s. The dominant components are found to be J = 2, 4. Notice that
the J -components sum up to the unity.

In Fig. 3, the left panel showcases the monopole (upper panel) and quadrupole (lower panel) strengths obtained
from the initial RPA calculations, prior to the projection implementation. In the high-energy region (which is, in
the present discussion, above ⇡ 15 MeV), the Isoscalar Giant Quadrupole Resonance (ISGQR) stands out in the
quadrupole strength while in the monopole case one can see the higher-lying ISGMR together with the lower-lying
ISGQR. The presence of these two peaks is interpreted as the outcome of the coupling between the ISGMR and the
K = 0 component of the ISGQR, as it was mentioned in the Introduction. However, a large amount of strength in
the low-energy region (below ⇡ 15 MeV) is also observed, that instead does not have an obvious interpretation.

In the right panel of Fig. 3, the PAV strength, making use of Eq. (11), is displayed . In the quadrupole case, only
the ISGQR remains, whereas the low-energy part of the spectrum is strongly suppressed. The monopole spectrum
is substantially altered instead (notice the very di↵erent scale on the y-axis). Indeed, the low-energy strength is
much enhanced and dominates over the ISGMR and ISGQR peaks. We stress that a similar behaviour was observed
in other nuclei that we studied, namely 20

Ne and 28
Si.

To shed light on the nature of this low-energy strength is now required, which is attempted in di↵erent ways. In
the right panel of Fig. 3, the overlap between the excited RPA states and the rotated HF state from Eq. (14), is also
highlighted on the right axis. The square modulus of the overlap from Eq. (15) is shown without averaging the RPA
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FIG. 3: Left: 24Mg monopole (upper panel) and quadrupole (lower panel) RPA responses (Nsh =11 and
Ecut = 100 MeV). Right: 24Mg monopole (upper panel) and quadrupole (lower panel) PAV RPA responses (left

axis) and associated rotational overlap from Eq. (15) (right axis) for the same set of parameters.

wave-function is spread over several (even) J ’s. The dominant components are found to be J = 2, 4. Notice that
the J -components sum up to the unity.

In Fig. 3, the left panel showcases the monopole (upper panel) and quadrupole (lower panel) strengths obtained
from the initial RPA calculations, prior to the projection implementation. In the high-energy region (which is, in
the present discussion, above ⇡ 15 MeV), the Isoscalar Giant Quadrupole Resonance (ISGQR) stands out in the
quadrupole strength while in the monopole case one can see the higher-lying ISGMR together with the lower-lying
ISGQR. The presence of these two peaks is interpreted as the outcome of the coupling between the ISGMR and the
K = 0 component of the ISGQR, as it was mentioned in the Introduction. However, a large amount of strength in
the low-energy region (below ⇡ 15 MeV) is also observed, that instead does not have an obvious interpretation.

In the right panel of Fig. 3, the PAV strength, making use of Eq. (11), is displayed . In the quadrupole case, only
the ISGQR remains, whereas the low-energy part of the spectrum is strongly suppressed. The monopole spectrum
is substantially altered instead (notice the very di↵erent scale on the y-axis). Indeed, the low-energy strength is
much enhanced and dominates over the ISGMR and ISGQR peaks. We stress that a similar behaviour was observed
in other nuclei that we studied, namely 20

Ne and 28
Si.

To shed light on the nature of this low-energy strength is now required, which is attempted in di↵erent ways. In
the right panel of Fig. 3, the overlap between the excited RPA states and the rotated HF state from Eq. (14), is also
highlighted on the right axis. The square modulus of the overlap from Eq. (15) is shown without averaging the RPA
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FIG. 3: Left: 24Mg monopole (upper panel) and quadrupole (lower panel) RPA responses (Nsh =11 and
Ecut = 100 MeV). Right: 24Mg monopole (upper panel) and quadrupole (lower panel) PAV RPA responses (left

axis) and associated rotational overlap from Eq. (15) (right axis) for the same set of parameters.

wave-function is spread over several (even) J ’s. The dominant components are found to be J = 2, 4. Notice that
the J -components sum up to the unity.

In Fig. 3, the left panel showcases the monopole (upper panel) and quadrupole (lower panel) strengths obtained
from the initial RPA calculations, prior to the projection implementation. In the high-energy region (which is, in
the present discussion, above ⇡ 15 MeV), the Isoscalar Giant Quadrupole Resonance (ISGQR) stands out in the
quadrupole strength while in the monopole case one can see the higher-lying ISGMR together with the lower-lying
ISGQR. The presence of these two peaks is interpreted as the outcome of the coupling between the ISGMR and the
K = 0 component of the ISGQR, as it was mentioned in the Introduction. However, a large amount of strength in
the low-energy region (below ⇡ 15 MeV) is also observed, that instead does not have an obvious interpretation.

In the right panel of Fig. 3, the PAV strength, making use of Eq. (11), is displayed . In the quadrupole case, only
the ISGQR remains, whereas the low-energy part of the spectrum is strongly suppressed. The monopole spectrum
is substantially altered instead (notice the very di↵erent scale on the y-axis). Indeed, the low-energy strength is
much enhanced and dominates over the ISGMR and ISGQR peaks. We stress that a similar behaviour was observed
in other nuclei that we studied, namely 20

Ne and 28
Si.

To shed light on the nature of this low-energy strength is now required, which is attempted in di↵erent ways. In
the right panel of Fig. 3, the overlap between the excited RPA states and the rotated HF state from Eq. (14), is also
highlighted on the right axis. The square modulus of the overlap from Eq. (15) is shown without averaging the RPA
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FIG. 3: Left: 24Mg monopole (upper panel) and quadrupole (lower panel) RPA responses (Nsh =11 and
Ecut = 100 MeV). Right: 24Mg monopole (upper panel) and quadrupole (lower panel) PAV RPA responses (left

axis) and associated rotational overlap from Eq. (15) (right axis) for the same set of parameters.

wave-function is spread over several (even) J ’s. The dominant components are found to be J = 2, 4. Notice that
the J -components sum up to the unity.

In Fig. 3, the left panel showcases the monopole (upper panel) and quadrupole (lower panel) strengths obtained
from the initial RPA calculations, prior to the projection implementation. In the high-energy region (which is, in
the present discussion, above ⇡ 15 MeV), the Isoscalar Giant Quadrupole Resonance (ISGQR) stands out in the
quadrupole strength while in the monopole case one can see the higher-lying ISGMR together with the lower-lying
ISGQR. The presence of these two peaks is interpreted as the outcome of the coupling between the ISGMR and the
K = 0 component of the ISGQR, as it was mentioned in the Introduction. However, a large amount of strength in
the low-energy region (below ⇡ 15 MeV) is also observed, that instead does not have an obvious interpretation.

In the right panel of Fig. 3, the PAV strength, making use of Eq. (11), is displayed . In the quadrupole case, only
the ISGQR remains, whereas the low-energy part of the spectrum is strongly suppressed. The monopole spectrum
is substantially altered instead (notice the very di↵erent scale on the y-axis). Indeed, the low-energy strength is
much enhanced and dominates over the ISGMR and ISGQR peaks. We stress that a similar behaviour was observed
in other nuclei that we studied, namely 20

Ne and 28
Si.

To shed light on the nature of this low-energy strength is now required, which is attempted in di↵erent ways. In
the right panel of Fig. 3, the overlap between the excited RPA states and the rotated HF state from Eq. (14), is also
highlighted on the right axis. The square modulus of the overlap from Eq. (15) is shown without averaging the RPA
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wave-function is spread over several (even) J ’s. The dominant components are found to be J = 2, 4. Notice that
the J -components sum up to the unity.

In Fig. 3, the left panel showcases the monopole (upper panel) and quadrupole (lower panel) strengths obtained
from the initial RPA calculations, prior to the projection implementation. In the high-energy region (which is, in
the present discussion, above ⇡ 15 MeV), the Isoscalar Giant Quadrupole Resonance (ISGQR) stands out in the
quadrupole strength while in the monopole case one can see the higher-lying ISGMR together with the lower-lying
ISGQR. The presence of these two peaks is interpreted as the outcome of the coupling between the ISGMR and the
K = 0 component of the ISGQR, as it was mentioned in the Introduction. However, a large amount of strength in
the low-energy region (below ⇡ 15 MeV) is also observed, that instead does not have an obvious interpretation.

In the right panel of Fig. 3, the PAV strength, making use of Eq. (11), is displayed . In the quadrupole case, only
the ISGQR remains, whereas the low-energy part of the spectrum is strongly suppressed. The monopole spectrum
is substantially altered instead (notice the very di↵erent scale on the y-axis). Indeed, the low-energy strength is
much enhanced and dominates over the ISGMR and ISGQR peaks. We stress that a similar behaviour was observed
in other nuclei that we studied, namely 20

Ne and 28
Si.

To shed light on the nature of this low-energy strength is now required, which is attempted in di↵erent ways. In
the right panel of Fig. 3, the overlap between the excited RPA states and the rotated HF state from Eq. (14), is also
highlighted on the right axis. The square modulus of the overlap from Eq. (15) is shown without averaging the RPA
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wave-function is spread over several (even) J ’s. The dominant components are found to be J = 2, 4. Notice that
the J -components sum up to the unity.

In Fig. 3, the left panel showcases the monopole (upper panel) and quadrupole (lower panel) strengths obtained
from the initial RPA calculations, prior to the projection implementation. In the high-energy region (which is, in
the present discussion, above ⇡ 15 MeV), the Isoscalar Giant Quadrupole Resonance (ISGQR) stands out in the
quadrupole strength while in the monopole case one can see the higher-lying ISGMR together with the lower-lying
ISGQR. The presence of these two peaks is interpreted as the outcome of the coupling between the ISGMR and the
K = 0 component of the ISGQR, as it was mentioned in the Introduction. However, a large amount of strength in
the low-energy region (below ⇡ 15 MeV) is also observed, that instead does not have an obvious interpretation.

In the right panel of Fig. 3, the PAV strength, making use of Eq. (11), is displayed . In the quadrupole case, only
the ISGQR remains, whereas the low-energy part of the spectrum is strongly suppressed. The monopole spectrum
is substantially altered instead (notice the very di↵erent scale on the y-axis). Indeed, the low-energy strength is
much enhanced and dominates over the ISGMR and ISGQR peaks. We stress that a similar behaviour was observed
in other nuclei that we studied, namely 20

Ne and 28
Si.

To shed light on the nature of this low-energy strength is now required, which is attempted in di↵erent ways. In
the right panel of Fig. 3, the overlap between the excited RPA states and the rotated HF state from Eq. (14), is also
highlighted on the right axis. The square modulus of the overlap from Eq. (15) is shown without averaging the RPA
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wave-function is spread over several (even) J ’s. The dominant components are found to be J = 2, 4. Notice that
the J -components sum up to the unity.

In Fig. 3, the left panel showcases the monopole (upper panel) and quadrupole (lower panel) strengths obtained
from the initial RPA calculations, prior to the projection implementation. In the high-energy region (which is, in
the present discussion, above ⇡ 15 MeV), the Isoscalar Giant Quadrupole Resonance (ISGQR) stands out in the
quadrupole strength while in the monopole case one can see the higher-lying ISGMR together with the lower-lying
ISGQR. The presence of these two peaks is interpreted as the outcome of the coupling between the ISGMR and the
K = 0 component of the ISGQR, as it was mentioned in the Introduction. However, a large amount of strength in
the low-energy region (below ⇡ 15 MeV) is also observed, that instead does not have an obvious interpretation.

In the right panel of Fig. 3, the PAV strength, making use of Eq. (11), is displayed . In the quadrupole case, only
the ISGQR remains, whereas the low-energy part of the spectrum is strongly suppressed. The monopole spectrum
is substantially altered instead (notice the very di↵erent scale on the y-axis). Indeed, the low-energy strength is
much enhanced and dominates over the ISGMR and ISGQR peaks. We stress that a similar behaviour was observed
in other nuclei that we studied, namely 20

Ne and 28
Si.

To shed light on the nature of this low-energy strength is now required, which is attempted in di↵erent ways. In
the right panel of Fig. 3, the overlap between the excited RPA states and the rotated HF state from Eq. (14), is also
highlighted on the right axis. The square modulus of the overlap from Eq. (15) is shown without averaging the RPA
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5

is obtained. The normalization factors from Eq. (4) are derived in the same way, providing

N0 =

Z 1

�1
d(cos�) dJ0

K0,K0
(�)hHF|ei�Jy |HFi

��1/2

, (12)

and
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� Z 1
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3

5
�1/2

. (13)

The strength from Eq. (11) is hereby referred to as PAV RPA strength. It is shown in App. A how Eq. (11) reduces
to Eq. (8) when the widely used needle approximation is invoked. (Eq. (8) is the standard RPA one, without
projection, isn’t it?)

C. Rotated Hartree-Fock state

As an additional element relevant for the following discussion a rotated version of the HF ground state is intro-
duced. In the monopole case, the matrix d

0
00 = 1, such that, as already evident from Eq. (1), the projector P

0
00

on J = 0 corresponds to the superposition of intrinsic states rotated over all the integration domain. For later
convenience, the state

|ROTi ⌘ NROTP
0
00|HFi = NROT

1

2

Z +1

�1
d (cos�) e

�i�Ĵy |HFi (14)

is introduced, with NROT a normalising constant enforcing the condition hROT|ROTi = 1. The overlap between
such rotational state and excited states is eventually introduced as

hROT|ni = NROThHF|P 0
00|ni . (15)

III. NUMERICAL DETAILS

Equations (11), (12) and (13) have been implemented in such a way to accommodate results from RPA on top
of HF in an harmonic oscillator basis. Such implementation is based on a series of basis transformations, going
from the elementary matrix elements of Jy in the spherical harmonic oscillator basis to the complicated matrix
elements. Details can be found in Ref. [21]. The implementation was validated through several steps, including the
application to a spherical system, that is 4He, where the projected and the original strengths were found to coincide
up to numerical precision.

Results are presented in this work for 24Mg, using the SkM⇤ Skyrme EDF [22]. The QRPA code originally
introduced in Ref. [23] is used. The code is built for open-shell systems and it is based on the HFB solution
obtained in a harmonic oscillator (HO) basis via the code HFBTHO in the version of Ref. [24]. It was used, without
projection, in Ref. [25] for calculations of the monopole and quadrupole strengths in Molybdenum isotopes. The
HO basis is characterised by the value of ~! = 1.2 ⇥ 41/A1/3 [MeV]. The axial quadrupole deformation parameter,
defined in this work as [26]

� ⌘
r

⇡

5

hQ20i⇡ + hQ20i⌫
hr2i⇡ + hr2i⌫

, (16)

is employed to generate the reference state of the QRPA solution. Convergence with respect to the number of major
shells Nsh included in the HO basis was studied. In the present case, a non-superfluid (i.e. HF) solution for 24Mg
was found for all considered Nsh, whose numerical details are given in Tab. I. Accordingly, the QRPA formalism
reduces to the RPA. The RPA problem is solved in the standard matrix form

✓
A B

�B
⇤ �A

⇤

◆✓
X

n

Y
n

◆
= En

✓
X

n

Y
n

◆
. (17)

RPA eigenvalues and eigenvectors are found by using diagonalization techniques for sparse matrices. In the present
work, RPA equations are solved for K⇡ = 0+. The strength associated with the standard monopole and quadrupole
operator, i.e.

P
i r

2
i and

P
i r

2
i Y20 respectively, are then computed. The strength’s stability against changes of the
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is obtained. The normalization factors from Eq. (4) are derived in the same way, providing

N0 =

Z 1

�1
d(cos�) dJ0

K0,K0
(�)hHF|ei�Jy |HFi

��1/2

, (12)

and

Nn =

2

4
X

p,h;p0,h0

�
X

n
phX

n
p0h0 � Y

n
phY

n
p0h0

� Z 1

�1
d(cos�) dJK,K(�)hHF|a†h0ap0e

i�Jya
†
pah|HFi

3

5
�1/2

. (13)

The strength from Eq. (11) is hereby referred to as PAV RPA strength. It is shown in App. A how Eq. (11) reduces
to Eq. (8) when the widely used needle approximation is invoked. (Eq. (8) is the standard RPA one, without
projection, isn’t it?)

C. Rotated Hartree-Fock state

As an additional element relevant for the following discussion a rotated version of the HF ground state is intro-
duced. In the monopole case, the matrix d

0
00 = 1, such that, as already evident from Eq. (1), the projector P

0
00

on J = 0 corresponds to the superposition of intrinsic states rotated over all the integration domain. For later
convenience, the state

|ROTi ⌘ NROTP
0
00|HFi = NROT

1

2

Z +1

�1
d (cos�) e

�i�Ĵy |HFi (14)

is introduced, with NROT a normalising constant enforcing the condition hROT|ROTi = 1. The overlap between
such rotational state and excited states is eventually introduced as

hROT|ni = NROThHF|P 0
00|ni . (15)

III. NUMERICAL DETAILS

Equations (11), (12) and (13) have been implemented in such a way to accommodate results from RPA on top
of HF in an harmonic oscillator basis. Such implementation is based on a series of basis transformations, going
from the elementary matrix elements of Jy in the spherical harmonic oscillator basis to the complicated matrix
elements. Details can be found in Ref. [21]. The implementation was validated through several steps, including the
application to a spherical system, that is 4He, where the projected and the original strengths were found to coincide
up to numerical precision.

Results are presented in this work for 24Mg, using the SkM⇤ Skyrme EDF [22]. The QRPA code originally
introduced in Ref. [23] is used. The code is built for open-shell systems and it is based on the HFB solution
obtained in a harmonic oscillator (HO) basis via the code HFBTHO in the version of Ref. [24]. It was used, without
projection, in Ref. [25] for calculations of the monopole and quadrupole strengths in Molybdenum isotopes. The
HO basis is characterised by the value of ~! = 1.2 ⇥ 41/A1/3 [MeV]. The axial quadrupole deformation parameter,
defined in this work as [26]
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hQ20i⇡ + hQ20i⌫
hr2i⇡ + hr2i⌫

, (16)

is employed to generate the reference state of the QRPA solution. Convergence with respect to the number of major
shells Nsh included in the HO basis was studied. In the present case, a non-superfluid (i.e. HF) solution for 24Mg
was found for all considered Nsh, whose numerical details are given in Tab. I. Accordingly, the QRPA formalism
reduces to the RPA. The RPA problem is solved in the standard matrix form

✓
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n

Y
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◆
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Y
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RPA eigenvalues and eigenvectors are found by using diagonalization techniques for sparse matrices. In the present
work, RPA equations are solved for K⇡ = 0+. The strength associated with the standard monopole and quadrupole
operator, i.e.

P
i r

2
i and

P
i r

2
i Y20 respectively, are then computed. The strength’s stability against changes of the



12

Where does the strength come from ?

0.0

0.2

0.4

|h
R

O
T
|n
i|

2

0 10 20 30 40
0

1,000

2,000

0

24Mg

S
00

[f
m

4
M

e
V
�
1
]

RPA

PAV RPA

H | ni = En | ni (1)

|�(q)i (2)

| ni =

Z
dq fn(q) |�(q)i (3)

�
h n|H| ni

h n| ni
= 0 (4)

Z h
H(p, q)� En N (p, q)

i
fn(q) dq = 0 (5)

H(p, q) ⌘ h�(p)|H|�(q)i (6)

N (p, q ⌘ h�(p)|�(q)i (7)

|�(q)i = h�(qmin)|�(q)i e
Z(q,qmin) |�(qmin)i (8)

|�(qmin)i (9)

Z(q, qmin) (10)

e
Z(q,qmin) (11)

Q
†
n =

X

ph

n
X

n
phc

†
pch � Y

n
phc

†
hcp

o
(12)

|nidef = arot |ROTi+ bvib |VIBi (13)

|RPAi (14)

Q
†
n |RPAi = |ni (15)

Qn |RPAi = 0 8n (16)

|n
J
i ⌘ N

J
nP

J
|ni (17)

P
J
MK = |JMi hJK| =

2J + 1

8⇡2

Z
d⌦ D

J⇤
MK(⌦)R(⌦) (18)

hROT|nidef (19)

1

RPA : symmetry-breaking solutions (vibrational)

Non-vanishing overlap with the rotational state !

H | ni = En | ni (1)

|�(q)i (2)

| ni =

Z
dq fn(q) |�(q)i (3)

�
h n|H| ni

h n| ni
= 0 (4)

Z h
H(p, q)� En N (p, q)

i
fn(q) dq = 0 (5)

H(p, q) ⌘ h�(p)|H|�(q)i (6)

N (p, q ⌘ h�(p)|�(q)i (7)

|�(q)i = h�(qmin)|�(q)i e
Z(q,qmin) |�(qmin)i (8)

|�(qmin)i (9)

Z(q, qmin) (10)

e
Z(q,qmin) (11)

Q
†
n =

X

ph

n
X

n
phc

†
pch � Y

n
phc

†
hcp

o
(12)

|nidef = arot |ROTi+ bvib |VIBi (13)

|RPAi (14)

Q
†
n |RPAi = |ni (15)

Qn |RPAi = 0 8n (16)

|n
J
i ⌘ N

J
nP

J
|ni (17)

P
J
MK = |JMi hJK| =

2J + 1

8⇡2

Z
d⌦ D

J⇤
MK(⌦)R(⌦) (18)

1

H | ni = En | ni (1)

|�(q)i (2)

| ni =

Z
dq fn(q) |�(q)i (3)

�
h n|H| ni

h n| ni
= 0 (4)

Z h
H(p, q)� En N (p, q)

i
fn(q) dq = 0 (5)

H(p, q) ⌘ h�(p)|H|�(q)i (6)

N (p, q ⌘ h�(p)|�(q)i (7)

|�(q)i = h�(qmin)|�(q)i e
Z(q,qmin) |�(qmin)i (8)

|�(qmin)i (9)

Z(q, qmin) (10)

e
Z(q,qmin) (11)

Q
†
n =

X

ph

n
X

n
phc

†
pch � Y

n
phc

†
hcp

o
(12)

|nidef = arot |ROTi+ bvib |VIBi (13)

|RPAi (14)

Q
†
n |RPAi = |ni (15)

Qn |RPAi = 0 8n (16)

|n
J
i ⌘ N

J
nP

J
|ni (17)

P
J
MK = |JMi hJK| =

2J + 1

8⇡2

Z
d⌦ D

J⇤
MK(⌦)R(⌦) (18)

hROT|nidef (19)

1

RPA states have vibrational and rotational (spurious) content

Rotation-vibration coupling
[PRC (2024) 109, 044315]

5

is obtained. The normalization factors from Eq. (4) are derived in the same way, providing
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The strength from Eq. (11) is hereby referred to as PAV RPA strength. It is shown in App. A how Eq. (11) reduces
to Eq. (8) when the widely used needle approximation is invoked. (Eq. (8) is the standard RPA one, without
projection, isn’t it?)

C. Rotated Hartree-Fock state

As an additional element relevant for the following discussion a rotated version of the HF ground state is intro-
duced. In the monopole case, the matrix d

0
00 = 1, such that, as already evident from Eq. (1), the projector P

0
00

on J = 0 corresponds to the superposition of intrinsic states rotated over all the integration domain. For later
convenience, the state

|ROTi ⌘ NROTP
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00|HFi = NROT
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2
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is introduced, with NROT a normalising constant enforcing the condition hROT|ROTi = 1. The overlap between
such rotational state and excited states is eventually introduced as

hROT|ni = NROThHF|P 0
00|ni . (15)

III. NUMERICAL DETAILS

Equations (11), (12) and (13) have been implemented in such a way to accommodate results from RPA on top
of HF in an harmonic oscillator basis. Such implementation is based on a series of basis transformations, going
from the elementary matrix elements of Jy in the spherical harmonic oscillator basis to the complicated matrix
elements. Details can be found in Ref. [21]. The implementation was validated through several steps, including the
application to a spherical system, that is 4He, where the projected and the original strengths were found to coincide
up to numerical precision.

Results are presented in this work for 24Mg, using the SkM⇤ Skyrme EDF [22]. The QRPA code originally
introduced in Ref. [23] is used. The code is built for open-shell systems and it is based on the HFB solution
obtained in a harmonic oscillator (HO) basis via the code HFBTHO in the version of Ref. [24]. It was used, without
projection, in Ref. [25] for calculations of the monopole and quadrupole strengths in Molybdenum isotopes. The
HO basis is characterised by the value of ~! = 1.2 ⇥ 41/A1/3 [MeV]. The axial quadrupole deformation parameter,
defined in this work as [26]
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hQ20i⇡ + hQ20i⌫
hr2i⇡ + hr2i⌫

, (16)

is employed to generate the reference state of the QRPA solution. Convergence with respect to the number of major
shells Nsh included in the HO basis was studied. In the present case, a non-superfluid (i.e. HF) solution for 24Mg
was found for all considered Nsh, whose numerical details are given in Tab. I. Accordingly, the QRPA formalism
reduces to the RPA. The RPA problem is solved in the standard matrix form

✓
A B

�B
⇤ �A

⇤

◆✓
X

n

Y
n

◆
= En

✓
X

n

Y
n

◆
. (17)

RPA eigenvalues and eigenvectors are found by using diagonalization techniques for sparse matrices. In the present
work, RPA equations are solved for K⇡ = 0+. The strength associated with the standard monopole and quadrupole
operator, i.e.

P
i r

2
i and
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i Y20 respectively, are then computed. The strength’s stability against changes of the
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FIG. 5: Left: 24Mg polar coordinate representation of the intrinsic RPA transition density for the rotational
phonon at ⇠10.8 MeV. Right: 24Mg polar coordinate representation of the rotated HF density from Eq. (18).

the rotated ground-state density given by

⇢↵ =

 
R̂y(↵) + R̂y(�↵)

2

!
⇢0 , (18)

with R̂ the rotation operator in the 3D real space, is shown in the right panel of Fig. 5. The comparison of the two
transition densities of Fig. 5 shows clearly that, in the surface region (i.e., r ⇠3 fm), �⇢ and the rotated HF state
have the same maxima, minima, and nodal points.

These two analyses show in di↵erent ways that the low-lying monopole strength does include states with a
rotational component. This emerges from the study of the overlap with the rotated HF state, as well as from the
representation of the densities and transition densities in real space. When projecting on J = 0 this rotational
component in the low-energy region is much enhanced, whereas the ISGMR and ISGQR peaks seem to be quenched
due to their small rotational content. Consequently, a procedure to subtract the spurious rotational component is
implemented. Using the previous definition of the state |ROTi from Eq. (14), for each excited RPA state |ni a new
state

|ñi ⌘ Nñ (|ni � an|ROTi) (19)

is introduced, with Nñ a normalising factor. The constant an is chosen so that the state |ñi is orthogonal to |ROTi,
i.e. hROT|ñi = 0, leading to

an = hROT|ni . (20)

It is straightforward to check that N�2
ñ = 1� |an|2. This procedure has been applied earlier, e.g. for the spurious

translational state [29], as well as for another spurious state, that is, the one associated with the number symmetry
breaking and restoration in HFB plus QRPA [30]. Here the interest lies in the removal of the rotational content
from the PAV RPA strength whose physical content is equivalent to the definition of a set of PAV RPA states

|nJi ⌘ NnP
J |ni , (21)

with Nn previously introduced in Eq. (13). A set of subtracted projected states can then be introduced according
to

|n̆Ji ⌘ Nn̆(P
J |ni � an |ROTi) . (22)

The coe�cients an are again defined such that the condition

hROT|n̆Ji = 0 (23)

is satisfied. Notice that because of the definition of |ROTi in Eq. (14), the states |n̆Ji di↵er from the PAV states
in Eq. (21) only for J = 0, in which case the coe�cients an are again defined as in Eq. (20) and the normalising
factor Nn̆ reads

(Nn̆)
�2 = hn|P 0|ni � |an|2

= Nn � |an|2 . (24)
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The strength from Eq. (11) is hereby referred to as PAV RPA strength. It is shown in App. A how Eq. (11) reduces
to Eq. (8) when the widely used needle approximation is invoked. (Eq. (8) is the standard RPA one, without
projection, isn’t it?)

C. Rotated Hartree-Fock state

As an additional element relevant for the following discussion a rotated version of the HF ground state is intro-
duced. In the monopole case, the matrix d
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00 = 1, such that, as already evident from Eq. (1), the projector P
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is introduced, with NROT a normalising constant enforcing the condition hROT|ROTi = 1. The overlap between
such rotational state and excited states is eventually introduced as

hROT|ni = NROThHF|P 0
00|ni . (15)

III. NUMERICAL DETAILS

Equations (11), (12) and (13) have been implemented in such a way to accommodate results from RPA on top
of HF in an harmonic oscillator basis. Such implementation is based on a series of basis transformations, going
from the elementary matrix elements of Jy in the spherical harmonic oscillator basis to the complicated matrix
elements. Details can be found in Ref. [21]. The implementation was validated through several steps, including the
application to a spherical system, that is 4He, where the projected and the original strengths were found to coincide
up to numerical precision.

Results are presented in this work for 24Mg, using the SkM⇤ Skyrme EDF [22]. The QRPA code originally
introduced in Ref. [23] is used. The code is built for open-shell systems and it is based on the HFB solution
obtained in a harmonic oscillator (HO) basis via the code HFBTHO in the version of Ref. [24]. It was used, without
projection, in Ref. [25] for calculations of the monopole and quadrupole strengths in Molybdenum isotopes. The
HO basis is characterised by the value of ~! = 1.2 ⇥ 41/A1/3 [MeV]. The axial quadrupole deformation parameter,
defined in this work as [26]
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is employed to generate the reference state of the QRPA solution. Convergence with respect to the number of major
shells Nsh included in the HO basis was studied. In the present case, a non-superfluid (i.e. HF) solution for 24Mg
was found for all considered Nsh, whose numerical details are given in Tab. I. Accordingly, the QRPA formalism
reduces to the RPA. The RPA problem is solved in the standard matrix form
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RPA eigenvalues and eigenvectors are found by using diagonalization techniques for sparse matrices. In the present
work, RPA equations are solved for K⇡ = 0+. The strength associated with the standard monopole and quadrupole
operator, i.e.
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i and
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i Y20 respectively, are then computed. The strength’s stability against changes of the
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FIG. 5: Left: 24Mg polar coordinate representation of the intrinsic RPA transition density for the rotational
phonon at ⇠10.8 MeV. Right: 24Mg polar coordinate representation of the rotated HF density from Eq. (18).

the rotated ground-state density given by

⇢↵ =

 
R̂y(↵) + R̂y(�↵)

2

!
⇢0 , (18)

with R̂ the rotation operator in the 3D real space, is shown in the right panel of Fig. 5. The comparison of the two
transition densities of Fig. 5 shows clearly that, in the surface region (i.e., r ⇠3 fm), �⇢ and the rotated HF state
have the same maxima, minima, and nodal points.

These two analyses show in di↵erent ways that the low-lying monopole strength does include states with a
rotational component. This emerges from the study of the overlap with the rotated HF state, as well as from the
representation of the densities and transition densities in real space. When projecting on J = 0 this rotational
component in the low-energy region is much enhanced, whereas the ISGMR and ISGQR peaks seem to be quenched
due to their small rotational content. Consequently, a procedure to subtract the spurious rotational component is
implemented. Using the previous definition of the state |ROTi from Eq. (14), for each excited RPA state |ni a new
state

|ñi ⌘ Nñ (|ni � an|ROTi) (19)

is introduced, with Nñ a normalising factor. The constant an is chosen so that the state |ñi is orthogonal to |ROTi,
i.e. hROT|ñi = 0, leading to

an = hROT|ni . (20)

It is straightforward to check that N�2
ñ = 1� |an|2. This procedure has been applied earlier, e.g. for the spurious

translational state [29], as well as for another spurious state, that is, the one associated with the number symmetry
breaking and restoration in HFB plus QRPA [30]. Here the interest lies in the removal of the rotational content
from the PAV RPA strength whose physical content is equivalent to the definition of a set of PAV RPA states

|nJi ⌘ NnP
J |ni , (21)

with Nn previously introduced in Eq. (13). A set of subtracted projected states can then be introduced according
to

|n̆Ji ⌘ Nn̆(P
J |ni � an |ROTi) . (22)

The coe�cients an are again defined such that the condition

hROT|n̆Ji = 0 (23)

is satisfied. Notice that because of the definition of |ROTi in Eq. (14), the states |n̆Ji di↵er from the PAV states
in Eq. (21) only for J = 0, in which case the coe�cients an are again defined as in Eq. (20) and the normalising
factor Nn̆ reads

(Nn̆)
�2 = hn|P 0|ni � |an|2

= Nn � |an|2 . (24)
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FIG. 5: Left: 24Mg polar coordinate representation of the intrinsic RPA transition density for the rotational
phonon at ⇠10.8 MeV. Right: 24Mg polar coordinate representation of the rotated HF density from Eq. (18).
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i.e. hROT|ñi = 0, leading to

an = hROT|ni . (20)

It is straightforward to check that N�2
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from the PAV RPA strength whose physical content is equivalent to the definition of a set of PAV RPA states
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transition densities of Fig. 5 shows clearly that, in the surface region (i.e., r ⇠3 fm), �⇢ and the rotated HF state
have the same maxima, minima, and nodal points.

These two analyses show in di↵erent ways that the low-lying monopole strength does include states with a
rotational component. This emerges from the study of the overlap with the rotated HF state, as well as from the
representation of the densities and transition densities in real space. When projecting on J = 0 this rotational
component in the low-energy region is much enhanced, whereas the ISGMR and ISGQR peaks seem to be quenched
due to their small rotational content. Consequently, a procedure to subtract the spurious rotational component is
implemented. Using the previous definition of the state |ROTi from Eq. (14), for each excited RPA state |ni a new
state

|ñi ⌘ Nñ (|ni � an|ROTi) (19)

is introduced, with Nñ a normalising factor. The constant an is chosen so that the state |ñi is orthogonal to |ROTi,
i.e. hROT|ñi = 0, leading to

an = hROT|ni . (20)

It is straightforward to check that N�2
ñ = 1� |an|2. This procedure has been applied earlier, e.g. for the spurious

translational state [29], as well as for another spurious state, that is, the one associated with the number symmetry
breaking and restoration in HFB plus QRPA [30]. Here the interest lies in the removal of the rotational content
from the PAV RPA strength whose physical content is equivalent to the definition of a set of PAV RPA states
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with Nn previously introduced in Eq. (13). A set of subtracted projected states can then be introduced according
to
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J |ni � an |ROTi) . (22)

The coe�cients an are again defined such that the condition
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is satisfied. Notice that because of the definition of |ROTi in Eq. (14), the states |n̆Ji di↵er from the PAV states
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is obtained. The normalization factors from Eq. (4) are derived in the same way, providing

N0 =

Z 1

�1
d(cos�) dJ0

K0,K0
(�)hHF|ei�Jy |HFi

��1/2

, (12)

and

Nn =

2

4
X

p,h;p0,h0

�
X

n
phX

n
p0h0 � Y

n
phY

n
p0h0

� Z 1

�1
d(cos�) dJK,K(�)hHF|a†h0ap0e

i�Jya
†
pah|HFi

3

5
�1/2

. (13)

The strength from Eq. (11) is hereby referred to as PAV RPA strength. It is shown in App. A how Eq. (11) reduces
to Eq. (8) when the widely used needle approximation is invoked. (Eq. (8) is the standard RPA one, without
projection, isn’t it?)

C. Rotated Hartree-Fock state

As an additional element relevant for the following discussion a rotated version of the HF ground state is intro-
duced. In the monopole case, the matrix d

0
00 = 1, such that, as already evident from Eq. (1), the projector P

0
00

on J = 0 corresponds to the superposition of intrinsic states rotated over all the integration domain. For later
convenience, the state

|ROTi ⌘ NROTP
0
00|HFi = NROT

1

2

Z +1

�1
d (cos�) e

�i�Ĵy |HFi (14)

is introduced, with NROT a normalising constant enforcing the condition hROT|ROTi = 1. The overlap between
such rotational state and excited states is eventually introduced as

hROT|ni = NROThHF|P 0
00|ni . (15)

III. NUMERICAL DETAILS

Equations (11), (12) and (13) have been implemented in such a way to accommodate results from RPA on top
of HF in an harmonic oscillator basis. Such implementation is based on a series of basis transformations, going
from the elementary matrix elements of Jy in the spherical harmonic oscillator basis to the complicated matrix
elements. Details can be found in Ref. [21]. The implementation was validated through several steps, including the
application to a spherical system, that is 4He, where the projected and the original strengths were found to coincide
up to numerical precision.

Results are presented in this work for 24Mg, using the SkM⇤ Skyrme EDF [22]. The QRPA code originally
introduced in Ref. [23] is used. The code is built for open-shell systems and it is based on the HFB solution
obtained in a harmonic oscillator (HO) basis via the code HFBTHO in the version of Ref. [24]. It was used, without
projection, in Ref. [25] for calculations of the monopole and quadrupole strengths in Molybdenum isotopes. The
HO basis is characterised by the value of ~! = 1.2 ⇥ 41/A1/3 [MeV]. The axial quadrupole deformation parameter,
defined in this work as [26]

� ⌘
r

⇡

5

hQ20i⇡ + hQ20i⌫
hr2i⇡ + hr2i⌫

, (16)

is employed to generate the reference state of the QRPA solution. Convergence with respect to the number of major
shells Nsh included in the HO basis was studied. In the present case, a non-superfluid (i.e. HF) solution for 24Mg
was found for all considered Nsh, whose numerical details are given in Tab. I. Accordingly, the QRPA formalism
reduces to the RPA. The RPA problem is solved in the standard matrix form

✓
A B

�B
⇤ �A

⇤

◆✓
X

n

Y
n

◆
= En

✓
X

n

Y
n

◆
. (17)

RPA eigenvalues and eigenvectors are found by using diagonalization techniques for sparse matrices. In the present
work, RPA equations are solved for K⇡ = 0+. The strength associated with the standard monopole and quadrupole
operator, i.e.

P
i r

2
i and

P
i r

2
i Y20 respectively, are then computed. The strength’s stability against changes of the
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FIG. 6: 24Mg monopole (upper panel) and quadrupole (lower panel) original and projected RPA responses
(Nsh =11 and Ecut = 100 MeV). For the projected monopole case the subtracted PAV RPA response is shown.

In the following, results relative to the subtaction technique from Eq. (22) will be labelled as subtracted PAV RPA.

Before displaying the subtracted results it should, however, be mentioned that the RPA orthonormalisation
conditions hn|mi = �mn and Eq. (23) cannot be simultaneously satisfied, producing in some cases unphysical
imaginary normalisation constants Nn̆ How do we treat these cases? Is the imaginary part very large? Maybe we
can just after the next sentence that this procedure is approximated since we don’t know the true vacuum, but it
is a reasonable approximation to investigate the e↵ect of the subtraction. . Indeed the normalising constant NROT

is here computed using the uncorrelated HF ground state, whereas the correlated RPA ground state shall be used
instead. Methods [31–34] exist to compute the |RPAi ground state but they are highly non-trivial, such that the
determination of the RPA ground state goes beyond the objectives of the present discussion. Hence, in the present
study NROT is set to fulfil the condition Nn̆ = 0 for the RPA phonon that most strongly couples to the rotational
state. This procedure was proven to be provide subracted spectra which are stable against variations of Nsh and
Ecut.

The subtracted PAV RPA response is then displayed in Fig. 6 for the monopole strength (upper panel) and
compared to the original RPA results. In the lower panel the quadrupole response is also shown for the PAV
and original RPA results, which were already shown in Fig. 3, for the sake of convenience. Once the rotational
component has been removed, the monopole response becomes weakly a↵ected by the AMP (as it was already
the case for the quadrupole response), except for the strength of the ISGMR that is enhanced relative to the peak
associated with the coupling with the ISGQR. As far as the low-energy response is concerned, it is almost completely
suppressed by the subtraction procedure.

Analogous results were also observed in the context of Projected Generator Coordinate Method (PGCM) cal-
culations of the monopole response in light- and medium-mass nuclei in an ab initio frame [21]. In that case the
symmetry-breaking RPA calculations shall be compared to the unprojected Generator Coordinate Method (GCM)
results. When AMP is introduced after having solved the GCM variational equation (PAV GCM), a spurious
coupling to the rotational state shows up, which can be similarly removed via subraction techniques. However,
di↵erently from the present RPA frame, the full PGCM calculation enforces AMP before solving the variational
equation. This allows to properly take into account the rotation-vibration coupling without introducing any spuri-
ous behaviour. A consistent VAP treatment of symmetry restoration in (Q)RPA has been introduced at a formal
level [9], but no realistic developments exist up to date.

Sum Rules... to decide whether to discuss or not
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FIG. 5: Left: 24Mg polar coordinate representation of the intrinsic RPA transition density for the rotational
phonon at ⇠10.8 MeV. Right: 24Mg polar coordinate representation of the rotated HF density from Eq. (18).
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with R̂ the rotation operator in the 3D real space, is shown in the right panel of Fig. 5. The comparison of the two
transition densities of Fig. 5 shows clearly that, in the surface region (i.e., r ⇠3 fm), �⇢ and the rotated HF state
have the same maxima, minima, and nodal points.

These two analyses show in di↵erent ways that the low-lying monopole strength does include states with a
rotational component. This emerges from the study of the overlap with the rotated HF state, as well as from the
representation of the densities and transition densities in real space. When projecting on J = 0 this rotational
component in the low-energy region is much enhanced, whereas the ISGMR and ISGQR peaks seem to be quenched
due to their small rotational content. Consequently, a procedure to subtract the spurious rotational component is
implemented. Using the previous definition of the state |ROTi from Eq. (14), for each excited RPA state |ni a new
state

|ñi ⌘ Nñ (|ni � an|ROTi) (19)

is introduced, with Nñ a normalising factor. The constant an is chosen so that the state |ñi is orthogonal to |ROTi,
i.e. hROT|ñi = 0, leading to

an = hROT|ni . (20)

It is straightforward to check that N�2
ñ = 1� |an|2. This procedure has been applied earlier, e.g. for the spurious

translational state [29], as well as for another spurious state, that is, the one associated with the number symmetry
breaking and restoration in HFB plus QRPA [30]. Here the interest lies in the removal of the rotational content
from the PAV RPA strength whose physical content is equivalent to the definition of a set of PAV RPA states

|nJi ⌘ NnP
J |ni , (21)

with Nn previously introduced in Eq. (13). A set of subtracted projected states can then be introduced according
to

|n̆Ji ⌘ Nn̆(P
J |ni � an |ROTi) . (22)

The coe�cients an are again defined such that the condition

hROT|n̆Ji = 0 (23)

is satisfied. Notice that because of the definition of |ROTi in Eq. (14), the states |n̆Ji di↵er from the PAV states
in Eq. (21) only for J = 0, in which case the coe�cients an are again defined as in Eq. (20) and the normalising
factor Nn̆ reads

(Nn̆)
�2 = hn|P 0|ni � |an|2

= Nn � |an|2 . (24)
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FIG. 5: Left: 24Mg polar coordinate representation of the intrinsic RPA transition density for the rotational
phonon at ⇠10.8 MeV. Right: 24Mg polar coordinate representation of the rotated HF density from Eq. (18).
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!
⇢0 , (18)

with R̂ the rotation operator in the 3D real space, is shown in the right panel of Fig. 5. The comparison of the two
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phonon at ⇠10.8 MeV. Right: 24Mg polar coordinate representation of the rotated HF density from Eq. (18).
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i.e. hROT|ñi = 0, leading to

an = hROT|ni . (20)

It is straightforward to check that N�2
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is obtained. The normalization factors from Eq. (4) are derived in the same way, providing

N0 =

Z 1

�1
d(cos�) dJ0

K0,K0
(�)hHF|ei�Jy |HFi

��1/2

, (12)

and

Nn =

2

4
X

p,h;p0,h0

�
X

n
phX

n
p0h0 � Y

n
phY

n
p0h0

� Z 1

�1
d(cos�) dJK,K(�)hHF|a†h0ap0e

i�Jya
†
pah|HFi

3

5
�1/2

. (13)

The strength from Eq. (11) is hereby referred to as PAV RPA strength. It is shown in App. A how Eq. (11) reduces
to Eq. (8) when the widely used needle approximation is invoked. (Eq. (8) is the standard RPA one, without
projection, isn’t it?)

C. Rotated Hartree-Fock state

As an additional element relevant for the following discussion a rotated version of the HF ground state is intro-
duced. In the monopole case, the matrix d

0
00 = 1, such that, as already evident from Eq. (1), the projector P

0
00

on J = 0 corresponds to the superposition of intrinsic states rotated over all the integration domain. For later
convenience, the state

|ROTi ⌘ NROTP
0
00|HFi = NROT

1

2

Z +1

�1
d (cos�) e

�i�Ĵy |HFi (14)

is introduced, with NROT a normalising constant enforcing the condition hROT|ROTi = 1. The overlap between
such rotational state and excited states is eventually introduced as

hROT|ni = NROThHF|P 0
00|ni . (15)

III. NUMERICAL DETAILS

Equations (11), (12) and (13) have been implemented in such a way to accommodate results from RPA on top
of HF in an harmonic oscillator basis. Such implementation is based on a series of basis transformations, going
from the elementary matrix elements of Jy in the spherical harmonic oscillator basis to the complicated matrix
elements. Details can be found in Ref. [21]. The implementation was validated through several steps, including the
application to a spherical system, that is 4He, where the projected and the original strengths were found to coincide
up to numerical precision.

Results are presented in this work for 24Mg, using the SkM⇤ Skyrme EDF [22]. The QRPA code originally
introduced in Ref. [23] is used. The code is built for open-shell systems and it is based on the HFB solution
obtained in a harmonic oscillator (HO) basis via the code HFBTHO in the version of Ref. [24]. It was used, without
projection, in Ref. [25] for calculations of the monopole and quadrupole strengths in Molybdenum isotopes. The
HO basis is characterised by the value of ~! = 1.2 ⇥ 41/A1/3 [MeV]. The axial quadrupole deformation parameter,
defined in this work as [26]

� ⌘
r

⇡

5

hQ20i⇡ + hQ20i⌫
hr2i⇡ + hr2i⌫

, (16)

is employed to generate the reference state of the QRPA solution. Convergence with respect to the number of major
shells Nsh included in the HO basis was studied. In the present case, a non-superfluid (i.e. HF) solution for 24Mg
was found for all considered Nsh, whose numerical details are given in Tab. I. Accordingly, the QRPA formalism
reduces to the RPA. The RPA problem is solved in the standard matrix form

✓
A B

�B
⇤ �A

⇤

◆✓
X

n

Y
n

◆
= En

✓
X

n

Y
n

◆
. (17)

RPA eigenvalues and eigenvectors are found by using diagonalization techniques for sparse matrices. In the present
work, RPA equations are solved for K⇡ = 0+. The strength associated with the standard monopole and quadrupole
operator, i.e.

P
i r

2
i and

P
i r

2
i Y20 respectively, are then computed. The strength’s stability against changes of the
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• Consequence of deformed ground state
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AMP Benchmarks

• Test on a spherical system (4He)

• AMP identity resolution accurately satisfied

RPA response stability wrt basis variations

• HO basis convergence

• Global stability

• High-energy fragmentation (continuum)

• 1p1h RPA basis

• Rapid convergence

• Ecut=100 MeV

6

Nsh EHF [MeV] r [fm] �
7 -195.65 2.991 0.378
9 -196.21 3.009 0.392
11 -196.93 3.011 0.383
13 -197.15 3.016 0.390

TABLE I: Hartree-Fock ground-state energy EHF, root mean square radius r and deformation � of the HF
vacuum adopted for the Nsh study in 24Mg.
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FIG. 1: Left: 24Mg monopole (upper panel) and quadrupole (lower panel) RPA responses for di↵erent Nsh values
(Ecut = 100 MeV). Right: 24Mg monopole (upper panel) and quadrupole (lower panel) RPA responses for

di↵erent Ecut values (Nsh = 11). Are lines distinguible in black/white format? Journals usually ask for that.

HO and RPA p-h basis dimension is investigated. The p-h basis dimension Ecut is defined in terms of the upper
value of the energies of the K

⇡ = 0+ p-h pairs included in the calculation. The convergence of the RPA spectra
with respect to Nsh and Ecut variations is presented in Fig. 1. Note that here, and in the following figures, the
discrete RPA strength is averaged using Lorentzian functions with a width of � = 0.5 MeV.

The convergence with respect to the harmonic oscillator basis size Nsh is first addressed for a fixed value of the
maximal ph-excitation energy value Ecut = 100 MeV. The original RPA response displays a converging pattern in
the quadrupole channel, as seen in the bottom panel of Fig. 1 (left). The low-energy component (below ⇠20 MeV)
of the monopole response also converges for relatively small Nsh. However, the high-energy component (above
⇠20 MeV) shows a strong dependence on the dimension of the HO basis and the fragmentation is still increasing
for the largest model space employed. This phenomenon is attributed to high-lying excitations involving states in
the continuum, such that details of single-particle configurations strongly a↵ect the global response.

The dependence on the ph excitation energy cut-o↵ Ecut is then addressed for a fixed number of harmonic
oscillator shells Nsh = 11. Monopole and quadrupole RPA responses are displayed in Fig. 1 (right). A converging
pattern is observed, inferring that a cuto↵ of Ecut =80 MeV is already su�cient to produce a reliable linelshape
for the main peaks, whereas results for Ecut =100 MeV and Ecut =120 MeV being practically identical.

Final results, unless otherwise specified, correspond to Nsh = 11 and Ecut =100 MeV in the following.

IV. RESULTS AND DISCUSSION

In order to understand the e↵ects of AMP on the RPA strength, its implications on the HF reference state are also
addressed. The J-components of the HF ground state are displayed in Fig. 2 and are in agreement with Ref. [27],
which is a further test of the reliability of the present AMP implementation. The HF ground state is found to
minimise the HF energy for a deformation parameter � = 0.38. Correspondingly, the J decomposition of the HF
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where in the second line summed indices have been renamed for compactness’ sake. Equation (5.70) is
equivalent to Eq. (6.43) from Ref. [147]. Details about the actual implementation of Eq. (5.70) are given in
App. J.

5.6 Identity resolutions involving the AMP

Projected quantities, such as transition matrix elements and states overlap, which are involved in the cal-
culation of the projected strength function, o�er a tool to test the correctness of the implementation itself.
Indeed, in the case of RPA this projection technique has been implemented only in one case [147] in the
literature, such that strong internal benchmarks are essential. Moreover, many other insights are provided
at the same time to further investigate the nature of the particle-hole excitations and the collective phonons
themselves, which also has no priors in literature to the best of our knowledge.

The identity resolution on a set of states carrying good angular momentum quantum numbers is intro-
duced as

1 =
X

JM↵

|JM↵ihJM↵| (5.71a)

=
X

JM

PJ
MM , (5.71b)

where the deÆnition of the projector provided by Eqs. (5.19a) and (5.19b) has been used.
Starting from the simplest case of a Slater determinant |�i, the identity resolution from Eq. (5.71b) can

be employed to decompose the normalised state into its good angular momentum components
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h�|JM↵ihJM↵|�i

=
X
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h�|JK↵ihJK↵|�i

=
X

J

h�|PJ
KK |�i , (5.72)

where in the second line the property Jz |�i = K |�i, which is veriÆed in axial symmetry, has been used.
This provides the sum rule X

J

h�|PJ
KK |�i = 1 , (5.73)

which is veriÆed both for the HF ground state and for each ph excitation contributing to the RPA phonons
(and has been checked for all the presented results, see Chap. 12).

The RPA states |!i being normalised according to Eq. (5.64) (h!|!i = 1), the same decomposition can
be veriÆed for all the phonons according to

X
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h!|Pj
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|!i = 1 , (5.74)

and similarly for ph states X
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|phi = 1 . (5.75)

One can proceed similarly for the overlap between the HF ground state and an arbitrary phonon excitation,

hHF|!i =
X

JM↵

hHF|JM↵ihJM↵|!i

4He

Setting
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is obtained. The normalization factors from Eq. (4) are derived in the same way, providing
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The strength from Eq. (11) is hereby referred to as PAV RPA strength. It is shown in App. A how Eq. (11) reduces
to Eq. (8) when the widely used needle approximation is invoked. (Eq. (8) is the standard RPA one, without
projection, isn’t it?)

C. Rotated Hartree-Fock state

As an additional element relevant for the following discussion a rotated version of the HF ground state is intro-
duced. In the monopole case, the matrix d

0
00 = 1, such that, as already evident from Eq. (1), the projector P

0
00

on J = 0 corresponds to the superposition of intrinsic states rotated over all the integration domain. For later
convenience, the state

|ROTi ⌘ NROTP
0
00|HFi = NROT

1

2

Z +1

�1
d (cos�) e

�i�Ĵy |HFi (14)

is introduced, with NROT a normalising constant enforcing the condition hROT|ROTi = 1. The overlap between
such rotational state and excited states is eventually introduced as

hROT|ni = NROThHF|P 0
00|ni . (15)

III. NUMERICAL DETAILS

Equations (11), (12) and (13) have been implemented in such a way to accommodate results from RPA on top
of HF in an harmonic oscillator basis. Such implementation is based on a series of basis transformations, going
from the elementary matrix elements of Jy in the spherical harmonic oscillator basis to the complicated matrix
elements. Details can be found in Ref. [21]. The implementation was validated through several steps, including the
application to a spherical system, that is 4He, where the projected and the original strengths were found to coincide
up to numerical precision.

Results are presented in this work for 24Mg, using the SkM⇤ Skyrme EDF [22]. The QRPA code originally
introduced in Ref. [23] is used. The code is built for open-shell systems and it is based on the HFB solution
obtained in a harmonic oscillator (HO) basis via the code HFBTHO in the version of Ref. [24]. It was used, without
projection, in Ref. [25] for calculations of the monopole and quadrupole strengths in Molybdenum isotopes. The
HO basis is characterised by the value of ~! = 1.2 ⇥ 41/A1/3 [MeV]. The axial quadrupole deformation parameter,
defined in this work as [26]

� ⌘
r

⇡

5

hQ20i⇡ + hQ20i⌫
hr2i⇡ + hr2i⌫

, (16)

is employed to generate the reference state of the QRPA solution. Convergence with respect to the number of major
shells Nsh included in the HO basis was studied. In the present case, a non-superfluid (i.e. HF) solution for 24Mg
was found for all considered Nsh, whose numerical details are given in Tab. I. Accordingly, the QRPA formalism
reduces to the RPA. The RPA problem is solved in the standard matrix form

✓
A B

�B
⇤ �A

⇤

◆✓
X

n

Y
n

◆
= En

✓
X

n

Y
n

◆
. (17)

RPA eigenvalues and eigenvectors are found by using diagonalization techniques for sparse matrices. In the present
work, RPA equations are solved for K⇡ = 0+. The strength associated with the standard monopole and quadrupole
operator, i.e.

P
i r

2
i and

P
i r

2
i Y20 respectively, are then computed. The strength’s stability against changes of the

6

Nsh EHF [MeV] r [fm] �
7 -195.65 2.991 0.378
9 -196.21 3.009 0.392
11 -196.93 3.011 0.383
13 -197.15 3.016 0.390

TABLE I: Hartree-Fock ground-state energy EHF, root mean square radius r and deformation � of the HF
vacuum adopted for the Nsh study in 24Mg.
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HO and RPA p-h basis dimension is investigated. The p-h basis dimension Ecut is defined in terms of the upper
value of the energies of the K

⇡ = 0+ p-h pairs included in the calculation. The convergence of the RPA spectra
with respect to Nsh and Ecut variations is presented in Fig. 1. Note that here, and in the following figures, the
discrete RPA strength is averaged using Lorentzian functions with a width of � = 0.5 MeV.

The convergence with respect to the harmonic oscillator basis size Nsh is first addressed for a fixed value of the
maximal ph-excitation energy value Ecut = 100 MeV. The original RPA response displays a converging pattern in
the quadrupole channel, as seen in the bottom panel of Fig. 1 (left). The low-energy component (below ⇠20 MeV)
of the monopole response also converges for relatively small Nsh. However, the high-energy component (above
⇠20 MeV) shows a strong dependence on the dimension of the HO basis and the fragmentation is still increasing
for the largest model space employed. This phenomenon is attributed to high-lying excitations involving states in
the continuum, such that details of single-particle configurations strongly a↵ect the global response.

The dependence on the ph excitation energy cut-o↵ Ecut is then addressed for a fixed number of harmonic
oscillator shells Nsh = 11. Monopole and quadrupole RPA responses are displayed in Fig. 1 (right). A converging
pattern is observed, inferring that a cuto↵ of Ecut =80 MeV is already su�cient to produce a reliable linelshape
for the main peaks, whereas results for Ecut =100 MeV and Ecut =120 MeV being practically identical.

Final results, unless otherwise specified, correspond to Nsh = 11 and Ecut =100 MeV in the following.

IV. RESULTS AND DISCUSSION

In order to understand the e↵ects of AMP on the RPA strength, its implications on the HF reference state are also
addressed. The J-components of the HF ground state are displayed in Fig. 2 and are in agreement with Ref. [27],
which is a further test of the reliability of the present AMP implementation. The HF ground state is found to
minimise the HF energy for a deformation parameter � = 0.38. Correspondingly, the J decomposition of the HF
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In the case of the RPA transition amplitudes, | 1i is the RPA ground-state, hereafter indicated as |RPAi. The
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whereas the |RPAi ground state is defined by the vacuum condition Qn|RPAi = 0, for each n. A näıve application
of the same AMP procedure used for the TDA would lead to an expression in which the contribution from the Y -
amplitudes vanishes. Indeed, the projected RPA transition amplitudes must be obtained consistently with the quasi-
boson approximation (QBA), which is commonly invoked when computing RPA spectra. Such an approximation
boils down to replacing operators products with appropriate commutators and the RPA ground-state with the HF
ground state afterwards. Here and in the following equalities in the QBA sense are indicated by wiggly equal signs.
The usual textbook formula, without explicit angular momentum labels and without projection, reads
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where the previously given definition of the RPA ground-state is used in the second equality. As a consequence,
when projection is taken into account, a formula avoiding the suppression of the backwards aplitudes Y is desirable,
also reducing to Eq. (8) when the projector is removed. Näıvely following the same procedure of Eq. (6) the
ensuing result is obtained
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where the backward amplitudes Y cancel out for all K 6= K0 or µ 6= 0, casting a doubt on the procedure. It is
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The term that has been added after the second equality, with Q
† at the left, is zero as it was the term added by the

commutator in the second equality of (9). However, Eq. (9) gives a non-vanishing contribution of the Y amplitudes
for any K and correctly reduces to the TDA result (when the backwards amplitudes are ignored) and to the original
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boils down to replacing operators products with appropriate commutators and the RPA ground-state with the HF
ground state afterwards. Here and in the following equalities in the QBA sense are indicated by wiggly equal signs.
The usual textbook formula, without explicit angular momentum labels and without projection, reads
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†
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o
, (8)

where the previously given definition of the RPA ground-state is used in the second equality. As a consequence,
when projection is taken into account, a formula avoiding the suppression of the backwards aplitudes Y is desirable,
also reducing to Eq. (8) when the projector is removed. Näıvely following the same procedure of Eq. (6) the
ensuing result is obtained
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where the backward amplitudes Y cancel out for all K 6= K0 or µ 6= 0, casting a doubt on the procedure. It is
rather preferable to write
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The term that has been added after the second equality, with Q
† at the left, is zero as it was the term added by the

commutator in the second equality of (9). However, Eq. (9) gives a non-vanishing contribution of the Y amplitudes
for any K and correctly reduces to the TDA result (when the backwards amplitudes are ignored) and to the original
RPA transition amplitudes (when the projector is suppressed). By inserting Eq. (10) into (3), the equation

hRPA||T�||ni = (2J0 + 1)N0Nn(�1)J0�K0
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ph
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⇥
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ph
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n

⇤✓ J0 � J

�K0 µ K0 � µ
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Reduced transition amplitudes
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is obtained. The normalization factors from Eq. (4) are derived in the same way, providing
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The strength from Eq. (11) is hereby referred to as PAV RPA strength. It is shown in App. A how Eq. (11) reduces
to Eq. (8) when the widely used needle approximation is invoked. (Eq. (8) is the standard RPA one, without
projection, isn’t it?)

C. Rotated Hartree-Fock state

As an additional element relevant for the following discussion a rotated version of the HF ground state is intro-
duced. In the monopole case, the matrix d

0
00 = 1, such that, as already evident from Eq. (1), the projector P

0
00

on J = 0 corresponds to the superposition of intrinsic states rotated over all the integration domain. For later
convenience, the state

|ROTi ⌘ NROTP
0
00|HFi = NROT

1

2

Z +1

�1
d (cos�) e

�i�Ĵy |HFi (14)

is introduced, with NROT a normalising constant enforcing the condition hROT|ROTi = 1. The overlap between
such rotational state and excited states is eventually introduced as

hROT|ni = NROThHF|P 0
00|ni . (15)

III. NUMERICAL DETAILS

Equations (11), (12) and (13) have been implemented in such a way to accommodate results from RPA on top
of HF in an harmonic oscillator basis. Such implementation is based on a series of basis transformations, going
from the elementary matrix elements of Jy in the spherical harmonic oscillator basis to the complicated matrix
elements. Details can be found in Ref. [21]. The implementation was validated through several steps, including the
application to a spherical system, that is 4He, where the projected and the original strengths were found to coincide
up to numerical precision.

Results are presented in this work for 24Mg, using the SkM⇤ Skyrme EDF [22]. The QRPA code originally
introduced in Ref. [23] is used. The code is built for open-shell systems and it is based on the HFB solution
obtained in a harmonic oscillator (HO) basis via the code HFBTHO in the version of Ref. [24]. It was used, without
projection, in Ref. [25] for calculations of the monopole and quadrupole strengths in Molybdenum isotopes. The
HO basis is characterised by the value of ~! = 1.2 ⇥ 41/A1/3 [MeV]. The axial quadrupole deformation parameter,
defined in this work as [26]

� ⌘
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5

hQ20i⇡ + hQ20i⌫
hr2i⇡ + hr2i⌫

, (16)

is employed to generate the reference state of the QRPA solution. Convergence with respect to the number of major
shells Nsh included in the HO basis was studied. In the present case, a non-superfluid (i.e. HF) solution for 24Mg
was found for all considered Nsh, whose numerical details are given in Tab. I. Accordingly, the QRPA formalism
reduces to the RPA. The RPA problem is solved in the standard matrix form
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RPA eigenvalues and eigenvectors are found by using diagonalization techniques for sparse matrices. In the present
work, RPA equations are solved for K⇡ = 0+. The strength associated with the standard monopole and quadrupole
operator, i.e.

P
i r

2
i and

P
i r

2
i Y20 respectively, are then computed. The strength’s stability against changes of the
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The strength from Eq. (11) is hereby referred to as PAV RPA strength. It is shown in App. A how Eq. (11) reduces
to Eq. (8) when the widely used needle approximation is invoked. (Eq. (8) is the standard RPA one, without
projection, isn’t it?)
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of HF in an harmonic oscillator basis. Such implementation is based on a series of basis transformations, going
from the elementary matrix elements of Jy in the spherical harmonic oscillator basis to the complicated matrix
elements. Details can be found in Ref. [21]. The implementation was validated through several steps, including the
application to a spherical system, that is 4He, where the projected and the original strengths were found to coincide
up to numerical precision.

Results are presented in this work for 24Mg, using the SkM⇤ Skyrme EDF [22]. The QRPA code originally
introduced in Ref. [23] is used. The code is built for open-shell systems and it is based on the HFB solution
obtained in a harmonic oscillator (HO) basis via the code HFBTHO in the version of Ref. [24]. It was used, without
projection, in Ref. [25] for calculations of the monopole and quadrupole strengths in Molybdenum isotopes. The
HO basis is characterised by the value of ~! = 1.2 ⇥ 41/A1/3 [MeV]. The axial quadrupole deformation parameter,
defined in this work as [26]
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shells Nsh included in the HO basis was studied. In the present case, a non-superfluid (i.e. HF) solution for 24Mg
was found for all considered Nsh, whose numerical details are given in Tab. I. Accordingly, the QRPA formalism
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FIG. 4: 24Mg (a) one-body intrinsic matter density of the HF ground state (b) intrinsic RPA transition density
for the ISGMR phonon at ⇠ 23.9 MeV (c) intrinsic RPA transition density for the ISGQR phonon at ⇠ 17.5 MeV

(d) intrinsic RPA transition density for the rotational phonon at ⇠ 10.8 MeV.

states with Lorentzians. The overlap is large for the states in the low-energy region, unveiling the non-negligible
rotational character of those. It is often said that the spurious rotational state pollutes the strength in the K⇡ = 1+

channel. Indeed, these are the quantum numbers of the infinitesimal rotation that is generated by the operator
e
i�Jy at lowest order in �; but, at higher orders, one can see rotational states in the spectra associated with other
quantum numbers like 0+ or 2+ (see also the discussion at p. 145 of Ref. [28]). The rotational coupling stability
with respect to Nsh and Ecut variations was also tested. In all studied cases a stable behaviour was observed in
this respecct in the low-energy sector, testifying that the coupling to the rotational state is not an artefact related
to the finite-basis size of the RPA calculations.

In order to have a complementary view of the rotational character of these states, as well as a confirmation of the
expected character of the ISGMR and ISGQR, the transition densities �⇢ of the various excited RPA states were
also analysed. In Fig. 4, a representation in cylindrical coordinates is used, so that the vertical axis is the z-axis
and the horizontal axis is one of the possible equivalent ones on the perpendicular plane. In Fig. 4a, for the sake of
reference, the ground-state density ⇢0 is shown. In Fig. 4b transition density associated with the peak at ⇠24 MeV
in the monopole response is shown, which is identified as the ISGMR. The plot, with its clear shape being the
same as the ground-state, shows that the state corresponds to the macroscopic picture of a monopole vibration.
Figure 4c corresponds to the peak at ⇠ 17.5 MeV, that is interpreted above as the ISGQR. Indeed, the nodal line
at constant polar angle ±✓ is reminiscent of an excitation induced by Y20 /

�
3 cos2 ✓ � 1

�
, so that also in this case

the original interpretation is confirmed. Finally, Fig. 4d displays the transition density of the low-energy peak that
stands up as the highest one in the monopole strength after projection (at ⇠10 MeV). Even with this picture, the
nature of the state stays elusive.

Therefore, a polar coordinate representation of this latter transition density was adopted. In the left panel of
Fig. 5, the same �⇢ of previous Fig. 4d is displayed, as a function of r and ✓. This representation makes the
comparison with the rotated state easier. Indeed, it is found that the overlap between the wave function of the
low-energy peak ⇠ 10.8 MeV and a rotated HF state is maximal when the rotation angle is ↵ ⇠ 24�. Consequently,
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FIG. 5: Left: 24Mg polar coordinate representation of the intrinsic RPA transition density for the rotational
phonon at ⇠10.8 MeV. Right: 24Mg polar coordinate representation of the rotated HF density from Eq. (18).

the rotated ground-state density given by

⇢↵ =

 
R̂y(↵) + R̂y(�↵)

2

!
⇢0 , (18)

with R̂ the rotation operator in the 3D real space, is shown in the right panel of Fig. 5. The comparison of the two
transition densities of Fig. 5 shows clearly that, in the surface region (i.e., r ⇠3 fm), �⇢ and the rotated HF state
have the same maxima, minima, and nodal points.

These two analyses show in di↵erent ways that the low-lying monopole strength does include states with a
rotational component. This emerges from the study of the overlap with the rotated HF state, as well as from the
representation of the densities and transition densities in real space. When projecting on J = 0 this rotational
component in the low-energy region is much enhanced, whereas the ISGMR and ISGQR peaks seem to be quenched
due to their small rotational content. Consequently, a procedure to subtract the spurious rotational component is
implemented. Using the previous definition of the state |ROTi from Eq. (14), for each excited RPA state |ni a new
state

|ñi ⌘ Nñ (|ni � an|ROTi) (19)

is introduced, with Nñ a normalising factor. The constant an is chosen so that the state |ñi is orthogonal to |ROTi,
i.e. hROT|ñi = 0, leading to

an = hROT|ni . (20)

It is straightforward to check that N�2
ñ = 1� |an|2. This procedure has been applied earlier, e.g. for the spurious

translational state [29], as well as for another spurious state, that is, the one associated with the number symmetry
breaking and restoration in HFB plus QRPA [30]. Here the interest lies in the removal of the rotational content
from the PAV RPA strength whose physical content is equivalent to the definition of a set of PAV RPA states

|nJi ⌘ NnP
J |ni , (21)

with Nn previously introduced in Eq. (13). A set of subtracted projected states can then be introduced according
to

|n̆Ji ⌘ Nn̆(P
J |ni � an |ROTi) . (22)

The coe�cients an are again defined such that the condition

hROT|n̆Ji = 0 (23)

is satisfied. Notice that because of the definition of |ROTi in Eq. (14), the states |n̆Ji di↵er from the PAV states
in Eq. (21) only for J = 0, in which case the coe�cients an are again defined as in Eq. (20) and the normalising
factor Nn̆ reads

(Nn̆)
�2 = hn|P 0|ni � |an|2

= Nn � |an|2 . (24)

Anomalous phonon Rotational state

Overlap maximised at

Comparison to rotational transition density
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Figure 12.5: J decomposition of the HF ground state in 24Mg
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(right).

The J distribution of ph excitations is more homogeneous than for a spherical HF ground state, as
visible in Fig. 12.6. Simultaneously, each ph state spreads over many more J ’s values up to high angular
momenta: whereas in 4He (Fig. 12.1 (right)) the sum rule in Eq. (5.75) was basically exhausted at J = 7, ph
states in 24Mg shows non-negligible components up to J = 14.

The sum rule in Eq. (5.74) is veriÆed for all K! = 0 phonons as visible from Fig. (12.7). It is interesting
to observe that only natural-parity states are obtained, i.e. states of positive (negative) parity only display
even (odd) J components.

The identities from Eq. (5.77) and (5.78) were also numerically validated. An example of the exhaustion
of both sum rules is provided in Fig. 12.8 for two selected phonons. Despite the orthogonality between
the HF ground state and the phonons, the di�erent J components of the HF and phonon states are not
separately orthogonal, but the di�erent J projections eventually sum up to zero. A similar e�ect is observed
for the matrix element of Q00, where the various J components eventually sum up to the original RPA value
but low and high J values contributing with opposite signs.

The projected monopole unperturbed strength is compared to the unprojected one in Fig. 12.9 (left).
Di�erently from 4He the large deformation of the 24Mg HF ground state leads to a strong suppression
of most matrix elements. Indeed, except for two ph excitations at ⇠15 MeV, all amplitudes are strongly
reduced due to the AMP on J = 0.
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in 24Mg. While phonon excitations are sorted according to their excitation energy, their position along the
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transition visible in Figs. 12.9 (right) and 12.10 (right).

Moving to the RPA response the situation is very di�erent from the one encountered in 4He, as seen in
Fig. 12.9 (right). While only minor changes are identiÆed in the IV channel, the IS response is dramatically
a�ected (notice the factor 1/10 in front of the projected IS monopole response) by the AMP, which was also
observed in Refs. [147, 145]. The most remarkable e�ect is the appearance of a prominent strength in the
5� 15 MeV region. This e�ect is not associated to an anomalous behaviour of the phonons’ normalisation
factor, as visible from the bottom panel of Fig. 12.9.

The di�erences between unprojected and projected spectra are similar in the unperturbed and RPA
cases. The unperturbed 1p-1h response displays a sharp increase for two excitations around 15 MeV whereas
a global suppression occurs for excitations between 20 and 40 MeV. As a direct consequence, a signiÆcant
amount of strength appears in the RPA response for a few phonons in the 8-15 MeV interval.

The K = 0 component of the quadrupolar response is analysed in Fig. 12.10. The matrix elements are
more uniformly a�ected than in the monopole case, as can be appreciate in the left panel. Indeed, all ph
transition amplitudes are strongly suppressed. The magniÆcation of the ph transitions at ⇠15 MeV is no
longer observed. Consequently, the projected RPA response (right panel) shows little di�erence with respect
to the original RPA response, both in the IS and IV channels.

The appearance of a large monopole strength in the 5-15 MeV region when projection is introduced is
shown to be associated with a strong overlap with the rotational state deÆned in Eq. (5.88). The quantity a!
deÆned in Eq. (5.90) requires the knowledge of the normalising constant of the rotational state. However,
it cannot be properly determined for the RPA ground state; i.e. only for the uncorrelated HF ground state.
Thus, the quantity

|hRPA|P0|!i |2 = |a! |2N�2ROT (12.6)

is plotted instead in Fig. 12.11, together with the monopole RPA and PAV RPA responses. It is observed that
the projected response is magniÆed for the phonons whose overlap with the rotational state is large. The
same e�ect was observed in PAV GCM calculations in Chap. 8.

Figure 12.12 shows, in linear and logarithmic scale, the rotational strength of the RPA phonons as a
function of the rotation angle. The strength is strongly concentrated in the low-energy states where the
anomalous appearance of monopole strength is identiÆed. The maximal overlap is mostly concentrated
around a Ænite rotation angle � ⇡ ⇡/6 and is symmetric with respect to ⇡/2.

AMP identity resolutions
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Figure 12.14: Original (left) and projected (right) RPA isoscalar response for di�erent model space dimen-
sions (E cut = 100 MeV).
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Figure 12.15: Original (left) and projected (right) RPA isovector response for di�erent model space dimen-
sions (E cut = 100 MeV).
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Figure 12.16: Original (left) and projected (right) RPA isoscalar response for di�erent values of E cut (emax =
10).
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Figure 12.17: Original (left) and projected (right) RPA isovector response for di�erent values of E cut (emax =
10).
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Figure 12.18: Left: RPA isoscalar rotational response for di�erent model space dimensions (E cut =
100 MeV); Right: RPA isoscalar rotational response for di�erent values of E cut (emax = 10). The isovector
rotational response vanishes identically for all studied cases.

exist to compute the |RPAi ground state but they are highly non-trivial, such that the determination of the
RPA ground state goes beyond the objectives of the present discussion. Hence, in the present study NROT
is Æxed to fulÆl the condition N0

⌫̆ = 0 (Eq. 5.99) for the RPA phonon that most strongly couples to the
rotational state. Subtracted PAV RPA spectra are displayed in Fig. 12.19. A convergence pattern similar to
the one observed for the unprojected RPA spectra is recovered, both with respect to emax and E cut.

Eventually, unprojected and projected responses are compared in Fig. 12.20. Once the rotational com-
ponent has been removed according to Eq. (5.100), the monopole response becomes also weakly a�ected
by the AMP, except for the strength of the GMR that is enhanced relative to the peak associated with the
coupling with the GQR.

12.4 Discussion

The e�ects of AMP on the strength distributions originating from symmetry-breaking RPA calculations
have been studied for the well-deformed prolate system 24Mg in Secs. 12.2 and 12.3. The appearance of
a large monopole strength at low energy was observed and shown to be due to a coupling to the (non-
inÆnitesimal) rotational motion. Analogous e�ects were observed in other systems such as 20Ne and 28Si
whose monopole and quadrupole RPA responses are displayed in Fig. 12.21, together with the information
concerning the overlap between the RPA phonons and the rotational state.

A similar behaviour was in fact previously identiÆed in Chap. 8 for PAV GCM calculations. Hence, the
coupling to the rotational state is related to the symmetry-breaking nature of the reference state and is not
peculiar to the speciÆc many-body method used to compute vibrational excitations. The Ænite frequency
of the rotational motion induces a coupling with the vibrational motion. Compared to GCM results, RPA
limits the e�ect of such a coupling to the low-energy (< 15 MeV) region.

Traditionally, the rotation is discussed in connection with the presence of a solution in the K = 1 channel
associated with an inÆnitesimal rotation (see Ref. [197] for instance) in deformed RPA calculations. Since
RPA is not suited to provide genuine rotation-like excitations (for collective rotations no restoring force
prevents the expansion parameters z in Eq. (3.41) from becoming large), only an inÆnitesimal rotation can
be explicitly developed as a zero-energy solution.

While rotation-vibration coupling e�ects in K , 1 solutions cannot be addressed within RPA, they could
be addressed in more phenomenological theories [150] via beyond-Ærst-order e�ects in the K = 0 channel.
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Figure 12.19: Left: subtracted PAV RPA isoscalar monopole response for di�erent model space dimensions
(E cut = 100 MeV) compared to the projected quadrupolar response; Right: subtracted PAV RPA isoscalar
monopole response for di�erent values of E cut (emax = 10) compared to the projected quadrupolar response.

A strategy to explicitly isolate and subtract the rotational content of the RPA phonons was introduced
in Sec. 5.7.4. Except for ambiguities concerning the normalising constant of the rotational state (a method
to circumvent such issue was proposed in Sec. 12.3.3), the rotational coupling can be explicitly removed a
posteriori. Eventually, the physical picture provided in this chapter is similar to the one at play in PAV GCM
calculations.

eventually, a proper treatment of rotational e�ects can only be achieved if they are explicitly considered
when solving the (Q)RPA equations. This demands the implementation of the full-Øedged projected (Q)RPA,
where the symmetry restoration is performed before diagonalising the reduced Hamiltonian of the problem.
Such variation after projection (Q)RPA (VAP-QRPA) has been formally introduced in Ref. [148], but no realistic
implementation has been realised so far. Developments in this direction are thus welcome to parallel PGCM
calculations.
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