Multiscale physics of nuclei from first principles

Gaute Hagen Oak Ridge National Laboratory

SSNET'24: International Conference on Shapes and Symmetries in NUCLEI: From Experiment to Theory

Orsay, November 7th, 2024

Collaborators

Tor Djärv (ORNL)

G. R. Jansen (ORNL)

T. Papenbrock (ORNL/UTK)

Zhonghao Sun (LSU) Baishan Hu (Texas A&M)

C. Forssén (Chalmers) A. Ekström (Chalmers)

Trend in realistic ab-initio calculations

- Tremendous progress in recent years because of ideas from EFT and the renormalization group
- Computational methods with polynomial cost (coupled clusters Uquantum computing U)

LOAK RIDGE

E NERG)

AMD

log(R_{TOP500}) nucleons, A

protons,

No. 1 in 2024

¹⁰⁰Sn

2018

2016 🖿 201!

neutrons,

CЛ

2000

201

⁷⁸Ni

2016

28

20

²⁰⁸Ph

¹³²Sn 2020

²⁸20

50

82

Hu et al. Nat Phys (2022)

(this work)

126

Ever-increasing computer power?

Multiscale physics of nuclei from ab-initio methods

What is ab initio in nuclear theory? A. Ekström et al, Frontiers (2023)

"we interpret the ab initio method to be a systematically improvable approach for quantitatively describing nuclei using the finest resolution scale possible while maximizing its predictive capabilities"

- Nuclei exhibit multiple energy scales ranging from hundreds of MeV in binding energies to fractions of an MeV for low-lying collective excitations.
- Describing these different energy scales within a unified ab-initio framework from chiral interactions is a long-standing challenge

Figure adapted from Bertsch, Dean, Nazarewicz, SciDAC review (2007)

Interactions from chiral effective field theory

Figure adapted from Bertsch, Dean, Nazarewicz, SciDAC review (2007)

Solving the quantum many-nucleon problem

An exponentially hard problem to solve!

1.1 exaflops

 $H|\Psi\rangle = E|\Psi\rangle$ **Polynomial scaling**

Systematically improvable approaches with controlled approximations: Coupled-cluster, IMSRG, Gorkov, SCGF,...

Fault tolerant quantum computing??

IBM Q Experience

What precision/accuracy can we aim for in abinitio modeling of nuclei?

Different many-body approaches agree with each for binding energies and radii (challenges exist for transitions, isotope shifts, and deformed shapes)

Coupled-cluster computations of deformed nuclei

βο

Inclusion of three-body forces

- The normal ordered 2-body approximation breaks rotational symmetry when normal-ordered with respect to a broken symmetry reference state
- Perform spherical HF with fractional filling to normal-order three-nucleon force

Mikael Frosini et al, Eur. Phys. J. A 57 (2021)

Coupled-cluster computations of deformed nuclei

- Include short-range correlations via coupled-cluster theory
 - Large contribution to total energy
 - Cost increases polynomial with mass

$$|\Psi\rangle = \Omega |\Phi_0\rangle = e^T |\Phi_0\rangle$$

- Include long-range correlations via symmetry projections
 - Small contribution to total energy
 - Relevant for rotational bands and transition matrix elements

$$E^{(J)} = \frac{\langle \widetilde{\Psi} | P_J H | \Psi \rangle}{\langle \widetilde{\Psi} | P_J | \Psi \rangle}$$

Neutron-rich nuclei beyond N = 20 are deformed

Poves & Retamosa (1987); Warburton, Becker, and Brown (1990); ...

Collectivity in neon isotopes

- Calculations follow data
- No effective charges
- Spectra of ³⁰⁻³⁴Ne follow that of a rigid rotor
- Small energies reflect a large moment of inertia and a strong deformation

Ensemble of delta-full interactions from recent study of ²⁸O

Y. Kondo et al., Nature **620**, 965–970 (2023)

Zhonghao Sun, A. Ekstrom, C. Forssen, G. Hagen. G. R. Jansen, T. Papenbrock arXiv:2404.00058 (2024)

Shape co-existence in ³⁰Ne

Zhonghao Sun, A. Ekstrom, C. Forssen, G. Hagen. G. R. Jansen, T. Papenbrock arXiv:2404.00058 (2024)

Making sense of spectra in odd-mass nuclei

Zhonghao Sun et al., arXiv:2409.02279 (2024) Hartree-Fock computations yield deformed reference Coupled-cluster + projection yields bands $\times^{..\times}$ **+**7/2⁻ 14 $\times 9/2^{-}$ 12+*** 105/2E (MeV) 8 .**.** 7/2[−] $3/2^{-1}$ 6 1/24 $5/2^{-1}$ $\mathbf{2}$ $3/2^{-1}$ 0 N 2 8+8 10, 8, 78 $K^{\pi} = \frac{3}{2}^{-1}$ $K^{\pi} = \frac{1}{2}^{-1}$ $K^{\pi} = \frac{1}{2}^{+}$

NCSM from Caprio, Maris, Vary & Smith, Int. J. Mod. Phys. E 24, 1541002 (2015)

Rotational bands in odd-mass magnesium

Zhonghao Sun et al., arXiv:2409.02279 (2024)

Strongly deformed nuclei around ⁸⁰Zr

Coupled-cluster computations of strongly deformed nuclei around ⁸⁰Zr

Baishan Hu, Zhonghao Sun, G. Hagen, T. Papenbrock. Phys. Rev. C **110**, L011302 (2024)

Deformation "south" of ⁷⁸Ni

T Otsuka and Y Tsunoda J. Phys. G 43 024009 (2016)

Deformed band? Where is the band head?

Deformation "south" of ⁷⁸Ni

- Erosion of the magic number N = 50 toward ⁷⁰Ca
 manifested by onset of deformation in the ground-states
 For ⁷⁸Ni we predict a low by pretational band consistent
- For ⁷⁸Ni we predict a low-lying rotational band consistent with recent data and other

Deformation "south" of ⁷⁸Ni

B. Hu, Z. Sun, G. Hagen, G. R. Jansen, T. Papenbrock, Phys. Lett. B 858, 139010 (2024)

What drives deformation in nuclei?

- 50's: surface vibrations of a liquid drop (Bohr/Mottelson)
- 60's: competition between pairing and quadrupole interactions from HFB calculations in two shells (Baranger/Kumar)
- 70's: isoscalar neutron-proton interactions dominate over isovector pairing from shell model (Federman/Pittel, Dufour/Zuker)

Global sensitivity analysis

<u>Sensitivity analysis</u> addresses the question 'How much does each model parameter contribute to the uncertainty in the prediction?'

<u>Global</u> methods deal with the uncertainties of the outputs due to input variations over the whole domain.

Computational bottleneck

A global sensitivity analyses of properties of atomic nuclei typically would require more than one million model evaluations

Sensitivity analysis of the radius and binding energy of ¹⁶O Andreas Ekström, Gaute Hagen PRL **123**, 252501 (2019)

Reduced order model for deformed states

Zhonghao Sun, A. Ekstrom, C. Forssen, G. Hagen. G. R. Jansen, T. Papenbrock arXiv:2404.00058 (2024)

- Eigenvector continuation method [Frame D. et al., Phys. Rev. Lett. 121, 032501 (2018), A. Ekström, G. Hagen PRL 123, 252501 (2019), S. König et al Phys. Lett. B 810 (2020) 135814]
- Write the Hamiltonian in a linearized form

$$H(\vec{\alpha}) = h_0 + \sum_{i=1}^{N_{\text{LECs}}=17} \alpha_i h_i$$

- Select "training points" (snap-shots) where we solve the exact problem
- Project a target Hamiltonian onto subspace of training vectors and diagonalize the generalized eigenvalue problem

 $\mathbf{H}(\vec{\alpha}_{\odot}) \ \vec{c} = E(\vec{\alpha}_{\odot}) \ \mathbf{N} \ \vec{c},$

Computing nuclei at lightning speed

(~5 mins: ~10⁵ energy/radius calculations of ¹⁶O)

[x1] SP-CC(64) evaluation 1 Time = 0 s

Realtime speed and accuracy of emulated ground-state energy and charge radius of ¹⁶O for different values of interaction parameters

$$H(\vec{\alpha}) = \sum_{i=0}^{N_{\rm LECs}=16} \alpha_i h_i$$

Accuracy: roughly the pixel size

Speedup: 20 years of single node computations can be replaced by a 1 hour run on a laptop

Andreas Ekström, Gaute Hagen PRL 123, 252501 (2019)

Linking deformation to nuclear forces

- More than 50% of the deformation is driven by the S-wave contact part of the interaction
- Adding short-range repulsion increase deformation presumably by reducing pairing
- Medium-range two-pion exchange is also important. Increasing its strength increases deformation, presumably by adding attraction in higher partial waves

Breaking and restoring symmetries

Exploits separation of scale between collective and specific UV physics Conceptually simple & computationally affordable

- Shape coexistence in ³⁰Ne and ³²Mg
- Rotational bands in odd mass neon and magnesium isotopes
- Much improved B(E2) values with no effective charges in ^{3x}Ne, ^{3x}Mg, ⁸⁰Zr
- Connected deformation to microscopic forces
- Predict low-lying rotational band in ⁷⁸Ni consistent with data

Rotational bands in odd-mass neon

Zhonghao Sun et al., arXiv:2409.02279 (2024)

Symmetry restored coupled-cluster theory

Projection after variation (PAV):
$$E^{(J)} = \frac{\langle \widetilde{\Psi} | P_J H | \Psi \rangle}{\langle \widetilde{\Psi} | P_J | \Psi \rangle}$$

Right coupled-cluster state: $|\Psi|$

$$\Psi\rangle = e^T |\Phi_0\rangle$$

Left state is parametrized differently:

$$\langle \widetilde{\Psi} | = \langle \Phi_0 | (1 + \Lambda) e^{-T}$$

Bi-variational

Image credit: Wikimedia Commons

For axial symmetry around the zaxis the rotation operator is:

$$R(\beta) \equiv e^{i\beta J_y}$$

$$P_J = \frac{1}{2} \int_0^\pi d\beta \sin(\beta) d_{00}^J(\beta) R(\beta)$$

Symmetry restored coupled-cluster theory

The kernels can be evaluated by using Thouless theorem:

 $\langle \Phi_0 | R(\beta) = \langle \Phi_0 | R(\beta) | \Phi_0 \rangle \langle \Phi_0 | e^{V_1(\beta)}$

$$\mathcal{H}(\beta) = \langle \Phi | \overline{R}(\beta) | \Phi \rangle \langle \Phi | Z(\beta) \widetilde{H}(\beta) e^{V(\beta)} e^{T_2} | \Phi \rangle$$
$$\mathcal{N}(\beta) = \langle \Phi | \overline{R}(\beta) | \Phi \rangle \langle \Phi | Z(\beta) e^{V(\beta)} e^{T_2} | \Phi \rangle$$

Similarity transformed rotation operator and Hamiltonian:

 $\overline{R}(\beta) = e^{-T_1} R(\beta) e^{T_1}$ $\widetilde{H}(\beta) = e^{V_1(\beta)} \overline{H} e^{-V_1(\beta)}$

 $e^{V(\beta)}e^{T_2}|\Phi\rangle = e^{W_0(\beta) + W_1(\beta) + W_2(\beta) + \dots}|\Phi\rangle$

- Does not truncate
- How to evaluate the disentangled amplitudes?

[Qiu et al, J. Chem. Phys. 147, 064111 (2017)]

Solving for the disentangled amplitudes [Qiu et al]

$$e^{V(\beta)}e^{T_2}|\Phi\rangle \approx e^{W_0(\beta)+W_1(\beta)+W_2(\beta)}|\Phi\rangle$$

Taking the derivative with respect to β leads to a set of ODEs with initial conditions: $W_0(\beta = 0) = W_1(\beta = 0) = 0, W_2(\beta = 0) = T_2$ [Qiu et al, J. Chem. Phys. 147, 064111 (2017)]

- Approximate restoration of symmetries

Approximate:

- Can lead to stiffness as $dV(\beta)/d(\beta)$ might be large for $\langle \Phi | R(\beta) | \Phi \rangle \approx 0$.
- The truncation at W_2 might lead to loss of accuracy at larger angles
- Kernels are not symmetric around $\beta = \frac{\pi}{2}$

New approach to solve for disentangled amplitudes We write: $e^{\lambda V} e^{T_2} |\Phi\rangle \approx e^{W_0(\lambda) + W_1(\lambda) + W_2(\lambda)} |\Phi\rangle$

Taking the derivative with respect to λ for fixed β leads to a new set of ODEs with initial conditions: $W_n(\lambda = 0) = T_n$

- Approximate restoration of symmetries
- Significantly improves stability of ODEs
- Kernels are fully symmetric around $\beta = \frac{\pi}{2}$

Zhonghao Sun, A. Ekstrom, C. Forssen, G. Hagen. G. R. Jansen, T. Papenbrock (2024)

Electromagnetic transitions

$$B(E2,\downarrow) \equiv |\langle 0^+ ||Q_2||2^+ \rangle|^2$$
$$B(E2,\downarrow) = \frac{\langle \widetilde{\Psi} | P_0 Q_{20} P_2 | \Psi \rangle \langle \widetilde{\Psi} | P_2 Q_{20} P_0 | \Psi \rangle}{\langle \widetilde{\Psi} | P_0 | \Psi \rangle \langle \widetilde{\Psi} | P_2 | \Psi \rangle}$$

Recall the left and right coupled-cluster states:

$$\langle \widetilde{\Psi} | \equiv \langle \Phi_0 | (1 + \Lambda) e^{-T} \qquad | \Psi \rangle \equiv e^T | \Phi_0 \rangle$$

Zhonghao Sun, A. Ekstrom, C. Forssen, G. Hagen. G. R. Jansen, T. Papenbrock (2024)

Benchmarking projected coupled-cluster in ²⁰Ne

Ground-state energies of neon isotopes

- Use natural orbitals for better convergence of triples excitations
- Computed binding energies overall in good agreement
- Triples excitations yield ~10% of CCSD correlation energy

Zhonghao Sun, A. Ekstrom, C. Forssen, G. Hagen. G. R. Jansen, T. Papenbrock (2024)

Shape co-existence in ³²Mg

Zhonghao Sun, A. Ekstrom, C. Forssen, G. Hagen. G. R. Jansen, T. Papenbrock (2024)

Onset of deformation and shape coexistence along N = 20

Shape co-existence in ³²Mg

K. Wimmer et al, PRL (2010)

Coupled-cluster method

				_				
$\Psi =$	$\Psi = e^T \Phi\rangle$ $T = T_1 + T_2 + \dots$						Scales gently (polynomial) with increasing system size	
T =								
	$= \sum_{ia} t_i^a a_a^\dagger a_i \ T_2 = \frac{1}{4} \sum_{ijab} t_{ij}^{ab} a_a^\dagger a_b^\dagger a_j a_i$						Truncation is only approximation	
$T_1 =$						$a_b^{\dagger}a_ja_i$	© Fulfills a bi-variational principle	
							③ A lot of freedom in the choice of reference	
$\bar{H}_{\rm CCSI}$	5 =	0p0h	1p1h	2p2h			state (spherical, deformed, pairing,)	
		$\left(E_{\text{CCSD}} \right)$	$egin{array}{cccc} & ar{H}_{0S} & ar{H}_{0D} \ & ar{H}_{SS} & ar{H}_{SD} \end{array} egin{array}{cccc} extsf{0p0h} & E \ & 1p1h & 0 \ & 0 \end{array}$	$E = \langle \Phi \rangle$	${ m P} \overline{H} \Phi angle$	$\overline{H} \Phi\rangle$ CCSD generates similarity transformed		
		0		\bar{H}_{SD}	1p1h	$0 = \langle \Phi \rangle$	${\cal P}^a_i \overline{H} \Phi angle$	Hamiltonian with no 1p-1h and no 2p-2h
						$0 = \langle \Phi \rangle$	${\cal P}^{ab}_{ij} \overline{H} \Phi angle$	excitations
		0	\bar{H}_{DS}	\bar{H}_{DD} ,) 2p2h	$\overline{H} \equiv e^{-}$	${}^{T}He^{T} = \Big($	$He^{T}\Big)_{c} = \left(H + HT_{1} + HT_{2} + \frac{1}{2}HT_{1}^{2} + \ldots\right)_{c}$
[Correlations are <i>exponentiated</i> 1p-1h and 2p-2h excitations. Part of Ap-Ah excitations included!							
	a, b, \dots \longrightarrow \Rightarrow \longrightarrow \Rightarrow \longrightarrow							
	i, j, \dots							

Cross-validation of projected HF emulator

Accuracy of R42 emulators as measured by the difference with respect to 400 exact Hartree-Fock calculations

The standard deviation of the differences indicates a relative precision of 1% The emulated energies are accurate

on the 10 keV level

Linking deformation to nuclear forces

- Constructed accurate and efficient emulator of projected HF using 68 training vectors
 - Training points obtained by using Latin Hypercube sampling within 20% of original low-energy constants

Deformation in neutron-rich magnesium

Ikuko Hamamoto, Phys. Rev. C 93, 054328 (2016)

Emulating rotational structure of ²⁰Ne

Varying only one parameter: $C_{^{1}S_{0}}$

Zhonghao Sun, Andreas Ekström, Christian Forssén, G. Hagen, G. R. Jansen, T. Papenbrock (2024)