SSNET 2024

ID de Contribution: 114

Type: Non spécifié

Lifetime measurements of excited 0+ states in 120Sn using thermal neutron capture

vendredi 8 novembre 2024 15:15 (8 minutes)

The semi-magic ${}_{50}^{120}$ Sn₇₀ lies in the neutron mid-shell among the other stable Sn isotopes, where shape coexistence was observed with the signature of deformed bands built on excited 0⁺ states intruding into the yrast band that is built on the spherical ground state. However, the lifetime of the excited 0⁺₃ only has a lower limit of 6 ps in the literature, which prevents the study of transition strengths, and as a result, its structure is obscured.

The 0_3^+ lifetime was measured in the first thermal neutron capture experiment, ¹¹⁹Sn(n, γ^{many})¹²⁰Sn, at the Institut Laue-Langevin, where the world's highest-flux thermal neutron beam was delivered at 10⁸ n/cm²/s at the target position on an isotopically enriched ¹¹⁹Sn target. Low-spin states in ¹²⁰Sn were populated up to the neutron separation energy $S_n = 9.1$ MeV, and the decaying gamma-ray cascades were detected with the Fission Product Prompt Gamma-ray Spectrometer (FIPPS) comprised of eight Compton-suppressed HPGe clovers coupled to an array of 15 LaBr₃(Ce) scintillation detectors. The LaBr₃(Ce) scintillators, which were used for gamma-ray detection and lifetime measurement using the Generalized Centroid Difference (GCD) method, have fast timing responses and are ideal for extracting lifetimes between 10 and a few hundred ps.

In total, there are 4×10^9 counts in the $\gamma\gamma\gamma$ cube where two LaBr₃(Ce) events were in coincidence with one HPGe.

Lifetime measurement for the 0_3^+ state in 120 Sn using the GCD technique will be presented. Additional lifetimes will also be measured where the $\gamma\gamma\gamma$ cascade's statistics permit, and detailed gamma-ray spectroscopy will be performed using the FIPPS data to significantly extend the 120 Sn level scheme.

Author: WU, Frank (Tongan) (Simon Fraser University, Burnaby, Canada)

Orateur: WU, Frank (Tongan) (Simon Fraser University, Burnaby, Canada)

Classification de Session: Session 17