Background estimation for the double alpha experiment at the FRS Ion Catcher

<u>M. Simonov</u>^{1,2}, H. Wilsenach³, L. Heitz^{4,5}, S. Ayet^{6,7,8}, T. Davinson⁸, T. Dickel^{1,7}, E. Khan⁵,
D. J. Morrissey⁹, M. P. Reiter⁸, L. Varga^{7,8}, D. Amanbayev^{1,2}, O. Hall⁸, I. Pohjalainen⁷, C. Theisen⁴,
N. Tortorelli^{7,10}, J. Yu⁷, J. Zhao⁷, S. Beck⁷, J. Bergmann¹, Z. Ge⁷, H. Geissel^{1,7}, C. Hornung⁷,
N. Kalantar-Nayestanaki¹¹, G. Kripko-Koncz^{1,2}, I. Mardor^{12,13}, M. Narang^{7,11}, W. R. Plaß^{1,7},
C. Scheidenberger^{1,2,7}, S. K. Singh⁷, A. State¹⁴, M. Vandebrouck⁴, P. J. Woods⁸,
FRS Ion Catcher Collaboration

 ²Helmholtz Research Academy Hesse for FAIR, GSI Helmholtz Center for Heavy Ion Research, 35392 Gießen, Germany
³Racah Institute of Physics, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel ⁴Irfu, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
⁵IJCLab, Université Paris-Saclay, CNRS/IN2P3, 91405 Orsay Cedex, France ⁶University Valencia, 46010 Valencia, Spain
⁷GSI Helmholtz Center for Heavy Ion Research, 64291 Darmstadt, Germany
⁸School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK
⁹Dept. of Chemistry, Michigan State University, East Lansing, Michigan, USA 48824 ¹⁰Ludwig-Maximilians-Universität München, D-80539 München, Germany
¹¹Nuclear Energy Group, ESRIG, University of Groningen, 9747 AA, Groningen, the Netherlands ¹²School of Physics and Astronomy, Tel Aviv University, 6997801 Tel Aviv, Israel ¹³Soreq Nuclear Research Center, 81800 Yavne, Israel
¹⁴Extreme Light Infrastructure-Nuclear Physics, 'Horia Hulubei' National Institute for R&D in

Physics and Nuclear Engineering, Str. Reactorului 30, 077125 Bucharest-Măgurele, Romania

Double alpha decay, a simultaneous emission of two alpha particles by the nucleus, is a possible rare decay mode first discussed in 1979 [1]. This decay was considered as two competing processes: immediate two particle emission or the emission of a ⁸Be-cluster with its instantaneous disintegration. However, the predicted half-lives for trans-lead isotopes were found to be too long for simple observation [2]. Recent microscopic calculations [3] show that expected kinematics of two-particle decay is symmetric, back-to-back emission of alpha particles, and the predicted branching ratio of the double alpha mode is on the order of 10^{-8} compared to conventional alpha decay, which would allow detection of such rare events in a coincidence measurement.

A dedicated experiment to the search for double alpha decay was conducted in 2022 at the FRS Ion Catcher (GSI), a universal system to perform decay and laser spectroscopy and mass measurements of heavy ions. An offline ²²⁸Th source was used to produce ²²⁴Ra recoil ions that were transported to a high geometry detector. Two sensitive silicon strip detectors detected all charged particles emitted by ²²⁴Ra. The number of registered decay events is on the order of 10⁹ which should be sufficient to test the theoretical prediction. Details on the design and performance of the experiment have been recently published [4].

Data obtained during a 4-month measurement are currently being analyzed. In this talk, we will present intermediate results necessary for the complete estimation of the background from decay products of ²²⁴Ra. In particular, details of the energy and time calibrations will be shown. A detailed geometry model used with the hit-pattern information and Monte Carlo simulations that describe random coincidences will be discussed.

- 1. Yu. N. Novikov, "Some features of nuclei close to the boundaries of nucleon stability," in Int. Workshop on U-400 Program. JINR (1979).
- 2. D. Poenaru, M. Ivascu, J. Physique Lett. 46, 591–594 (1985).
- 3. F. Mercier et al., Phys. Rev. Lett. 127 (2021) 012501.
- 4. L. Varga *et al.*, NIM A **1063** (2024) 169252.