The Heaviest Elements: Latest Results from Berkeley

Rod Clark

- The Science of the Heaviest Elements
- Structure of Deformed Trans-fermium Nuclei
- Directly making the Heaviest Elements
- Looking to the Future
- Summary

The Periodic Table

Heavy Element Science Questions

Where does the Periodic Table End?

How does electronic structure change because of relativistic effects?

When does it no longer make sense to talk of electronic shell structure? (One scenario – The electrons form a Fermi gas; no discernable valence properties; the end of Chemistry)

What combinations of protons and neutrons form a nucleus?

How do we describe the forces between nucleons?

What shapes (high order?), topologies (bubbles?), structures (isomerism?) can the nucleus display?

How does a nucleus decay and what are the timescales?

Structure of Deformed Trans-fermium Nuclei

Shapes and Shells

- Single-particle levels → shell structure

 Next major spherical gaps
 Deformed gaps

 Deformation and collectivity

 K-isomerism
 K_f=0
 j
 j
 K_i
 Rotational structures
 Low-lying vibrations
- Pairing properties
 - Multi-quasiparticle states
 - Rotation, α-decay, fission

Spectroscopy Experiments

Target

PPAC

Isomer Spectroscopy

160X160, 64mmX64mm DSSD

Si tunnel 8 SSSD's

X-Array, 5 clovers in box geometry

Digital DAQ

Stolen shamelessly from Darek Seweryniak

The Case of ²⁵¹Md

BERKELEY LAB

С

ERKELEY LAB

Indirectly Testing Models of SHE

R. R. Chasman et al., Rev. Mod. Phys. 49 833 (1977)

U.S. DEPARTMENT

SERKELEY LAB

[30] S.Ćwiok, S.Hofmann, W.Nazarewicz , Nucl. Phys. A 573 356 (1994).
[31] A.Parkhomenko and A.Sobiczewski, Acta Phys. Pol. B 35 2447 (2004).
[32] G.G.Adamian et al., Phys. Rev. C 82 054304 (2010).

[34] M.Bender, P.Bonche, T.Duguet, P.-H.Heenen, Nucl. Phys. A 723 354 (2003).[35] N.Yu.Shirikova, A.V.Sushkov, R.V.Jolos, Phys. Rev. C 88 064319 (2013),

Directly Making the Heaviest Elements

Cross Sections

Theory Reproducing Experiment

 $\sigma_{SHN} = \sigma_{cap} \times P_{CN} \times P_{sur}$

Some theories have been able to reproduce experimental cross-sections near "the bump" of SHE production. What will they say about the next elements?

Testing the models for ⁵⁰Ti-induced reactions

- Testing the calculations with a measurement of ⁵⁰Ti+²⁴⁴Pu, which makes the known isotopes of ^{290,291}Lv.
- We could then try to make E120 with the ⁵⁰Ti+²⁴⁹Cf reaction?!

High-Intensity ⁵⁰Ti Beam at the 88-Inch Cyclotron

Current consumption rate ~2.6mg/hr. TiO2 oxide reduced to metal by Argonne

Berkeley Gas-filled Separator (BGS)

Sci

SuperHeavy RECoil (SHREC) Detector

Source Characterization of a Detector for Heavy and Superheavy Nuclei

P. Golubev^{a,*}, R. Orford^b, F.H. Garcia^{b,1}, D. Rudolph^{a,b}, L.G. Sarmiento^a, R.M. Clark^b, J.M. Gates^b, J.A. Gooding^{b,c}, M. Grebo^{b,c}, Y. Hrabar^a, T.D. Kramasz^b, M. McCarthy^{b,d}, M.A. Mohamed^a, J.L. Pore^b, D.M. Cox^a

^aDepartment of Physics, Lund University, SE-22100 Lund, Sweden

^bNuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States

^cDepartment of Nuclear Engineering, University of California, Berkeley, CA 94720, United States

^dChemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States

Submitted to NIMA

- 6 cm x 18 cm implantation detector surrounded by upstream tunnel and downstream veto detector.
- Commissioned using reactions:
 ²⁰⁸Pb(⁴⁸Ca,2*n*)²⁵⁴No
 ²⁴⁴Pu(⁴⁸Ca,3-4*n*)²⁸⁹⁻²⁸⁸Fl
 ²⁰⁹Bi(⁵⁰Ti,xn)^{259-x}Db

²⁴⁴Pu(⁵⁰Ti, xn)^{294-x}Lv: Results

4n this work 3n this work

235

240

225

 E_{cm} (MeV)

230

 10^{-1}

10-2

I AR

210

215

220

σ_{prod}≈ 40 fb

One event every ≈200 days of beam-on-target

[1] Zagrabaev et al., PRC 78, 034601 (2008) [2] Kuzima et al., PRC 85, 014319 (2012) [3] Adamian et al., PRC 101, 034301 (2020) [4] T. Cap, private communication

~Status for New Element Experiments

Other Experiments Testing Cross Sections

Dubna	Russia	$^{54}Cr + ^{238}U \longrightarrow ^{292}Lv^*$	Events seen
Dubna	Russia	⁵⁰ Ti + ²⁴² Pu → ²⁹² Lv*	Events seen

Ongoing/Planned Experiments for New Element Discovery

RIKEN	Japan	⁵¹ V + ²⁴⁸ Cm → ²⁹⁹ 119*	Nothing seen $\sigma \leq \text{few fb}$
IMP	China	⁵⁴ Cr + ²⁴³ Am → ²⁹⁷ 119*	Nothing seen >150 days
Dubna	Russia	⁵⁴ Cr + ²⁴⁸ Cm → ³⁰² 120*	Yet to start
Berkeley	USA	⁵⁰ Ti + ²⁴⁹ Cf → ²⁹⁹ 120*	Yet to start
GSI	Germany	?	?
Ganil	France	?	?

Acknowledgements

Isomer decay spectroscopy of ²⁵¹Md

C. Morse,^{1,2} R.M. Clark,² D. Seweryniak ³ C.J. Appleton,² C.M. Campbell,² M.P. Carpenter,³ P. Chowdhury,⁴ H.L. Crawford,² M. Cromaz,² P. Fallon,² Z. Favier,⁵ T. Huang,^{3,6} F.G. Kondev,³ A. Korichi,⁷ T. Lauritsen,³ D.H. Potterveld,³ W. Reviol,³ D. Rudolph,⁸ C. Santamaria,² G. Savard,³ G.L. Wilson,⁹ and S. Zhu^{1, 3, *} ¹National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973, USA ²Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA ³Physics Division, Argonne National Laboratory, Argonne, IL 60439, USA ⁴Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, MA 01854, USA ⁵Physics Department, CERN, 1211 Geneva 23, Switzerland ⁶Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China ⁷IJCLab, Laboratoire de Physique des 2 Infinis Irène Joliot-Curie, Orsay IN2P3/CNRS France ⁸Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803

PHYSICAL REVIEW LETTERS 133, 172502 (2024)

Editors' Suggestion Featured in Physics

Toward the Discovery of New Elements: Production of Livermorium (Z = 116) with ⁵⁰Ti

J. M. Gates ^{1,1} R. Orford,¹ D. Rudolph,²¹ C. Appleton,¹ B. M. Barrios,³ J. Y. Benitez,¹ M. Bordeau,⁴ W. Botha,³ C. M. Campbell, J. Chadderton, A. T. Chemey, R. M. Clark, H. L. Crawford, J. D. Despotopulos, O. Dorvaux, N. E. Esker,³ P. Fallon,¹ C. M. Folden III,^{8,9} B. J. P. Gall,⁴ F. H. Garcia,^{1,†} P. Golubev,^{2,1} J. A. Gooding,^{1,10} M. Grebo,^{1,10} K. E. Gregorich,⁷ M. Guerrero,³ R. A. Henderson,⁷ R.-D. Herzberg,⁵ Y. Hrabar,² T. T. King,¹¹ M. Kireeff Covo,¹ A. S. Kirkland,^{8,9} R. Krücken,¹ E. Leistenschneider,¹ E. M. Lykiardopoulou,¹ M. McCarthy,^{1,10} J. A. Mildon,^{8,9} C. Müller-Gatermann,¹² L. Phair,¹ J. L. Pore,¹ E. Rice,^{1,10} K. P. Rykaczewski,¹¹ B. N. Sammis,⁷ L. G. Sarmiento,² D. Seweryniak,¹² D. K. Sharp,¹³ A. Sinjari,^{1,10} P. Steinegger,^{14,15} M. A. Stoyer,^{7,1} J. M. Szornel,¹ K. Thomas,⁷ D. S. Todd,¹ P. Vo, 3 V. Watson, 1 and P. T. Wooddy 7 ¹Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA ²Department of Physics, Lund University, 22100 Lund, Sweden ³San Jose State University, San Jose, California 95192, USA ⁴Université de Strasbourg, CNRS, IPHC UMR 7178, 67037 Strasbourg, France ⁵University of Liverpool, Liverpool, United Kingdom ⁶Oregon State University, Corvallis, Oregon 97331, USA ⁷Lawrence Livermore National Laboratory, Livermore, California 94550, USA ⁸Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA ⁹Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA ¹⁰University of California, Berkeley, California 94720, USA ¹¹Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA ¹²Argonne National Laboratory, Lemont, Illinois 60439, USA ¹³University of Manchester, Manchester, United Kingdom ¹⁴Department of Chemistry and Applied Biosciences, ETH Zürich, Zurich, Switzerland ¹⁵Nuclear Energy and Safety Division, Paul Scherrer Institute, Villigen PSI, Switzerland

