Competition between Tetrahedral and Octahedral Symmetries in ¹⁵²Sm Nucleus:

A new set of data from a dedicated experiment

Tumpa Bhattacharjee,

Variable Energy Cyclotron Centre, Kolkata, India

Competition between Tetrahedral and Octahedral	Tumpa Bhattacharjee,	International Conference on Shapes and Symmetries in
Symmetries in 152Sm Nucleus: A New set of data	VECC. Kolkata	Nuclei – From Experiment to Theory (SSNET -2024)
from a dedicated experiment		JC Lab, France, November 04 th - 08 th , 2024

We are Here

Competition between Tetrahedral and Octahedral Symmetries in ¹⁵²Sm Nucleus: A New set of data from a dedicated experiment Tumpa Bhattacharjee, VECC, Kolkata

We are Here

Competition between Tetrahedral and Octahedral Symmetries in ¹⁵²Sm Nucleus: A New set of data from a dedicated experiment Tumpa Bhattacharjee, VECC, Kolkata

The institute and City of Cyclotrons

K-130 (E ~ 7 - 10 MeV/u)

 $^{14}N^{4+}$, $^{16}O^{5+}$, $^{20}Ne^{6+}$, $^{32}S^{10+}$,etc.

¹H, ²H, ⁴He - High energy Light ion beam

K-500 (E ~ 10 - 50 MeV/u) ¹⁴N⁴⁺ (252- 270) MeV ¹⁶O⁵⁺ (330 - 362) MeV, ²⁰Ne⁶⁺ (397 - 434) MeV

RIB (E ~ 100keV/u, I~ 8000 p/sec) ¹¹C, ¹¹CO, ¹¹CO₂, ¹⁴O, ⁴³K, ⁴¹Ar

International Conference on Shapes and Symmetries in Nuclei – From Experiment to Theory (SSNET -2024) JC Lab, France, November 04th – 08th, 2024

30 MeV H Cyclotron
 Adjustable from 15- 30 MeV
 I ~ 350 μA
 ¹⁸F (produce FDG for PET)
 ⁶⁷Ga, ²⁰¹Tl, ¹²³I (SPECT)

Competition between Tetrahedral and Octahedral Symmetries in ¹⁵²Sm Nucleus: A New set of data from a dedicated experiment Tumpa Bhattacharjee, VECC, Kolkata

Instruments for Nuclear Physics Experiment

Setup for high resolution y-ray Spectroscopy

A. Saha et al., Nucl. Phys. **A 976**, 1 (2018)

Soumik Bhattacharya et al., Phys. Rev. C **98**, 044311 (2018)

<u>VE</u>CC array for <u>NU</u>clear <u>S</u>pectroscopy EIGHT Compton suppressed Clover HPGe detectors

Spectroscopy with light ion beam

Indian National Gamma Array (INGA)

Compton suppressed Clover HPGe detectors – pulled from many institutes

Competition between Tetrahedral and Octahedral Symmetries in ¹⁵²Sm Nucleus: A New set of data from a dedicated experiment Tumpa Bhattacharjee, VECC, Kolkata

Setups for $\gamma - \gamma$ fast timing Spectroscopy

<u>VE</u>CC array for <u>N</u>uclear fast <u>T</u>iming and ang<u>U</u>lar Cor<u>RE</u>lation studies (VENTURE)

- 1. S. S. Alam, TB, et al., NIM Phys. Res. A 874 103 (2017)
- 2. S. S. Alam, TB,,,,, Phys. Rev. C 99, 014306 (2019) .
- 3. S. Basak,....TB, Phys. Rev. C 104, 024320 (2021).
- 4. S. S. Alam, D. Banerjee, TB et al., Eur. Phys. Jour. A 56, 269 (2020).

Recent measurement Lifetimes in ¹⁵⁴Gd

Poster at SSNET 2024

VENTURE - 2.0 with 2in. x 1 in. LaBr/CeBr

Competition between Tetrahedral and Octahedral Symmetries in ¹⁵²Sm Nucleus: A New set of data from a dedicated experiment Tumpa Bhattacharjee, VECC, Kolkata

Setups for $\gamma - \gamma$ fast timing Spectroscopy

(Around Z = 64, N = 90 & Z = 40, N = 60)Measurement of lifetime to

Radiochemical separation at VECC OR LOHFNGRIN at ILL

¹³⁰ Xe	¹³¹ Xe (stable)	¹³² Xe (stable)	¹³³ Xe (5d)	¹³⁴ Xe (stable)	¹³⁵ Xe (9h) N/Z=1.5	¹³⁶ Xe (stable)	¹³⁷ Xe	54
¹²⁹ I	¹³⁰ I	¹³¹ I (8d)	¹³² T (2h)	¹³³ I (21h)	¹³⁴ I (53h)	¹³⁵ I (6.6h)	¹³⁶ T	53
¹²⁸ Te	¹²⁹ Te	¹³⁰ Te (stable)	¹³¹ Te (33h)	¹³² Te (3.2d)	¹³³ Te (55m)	¹³⁴ Te (42m)	¹³⁵ Te	52
¹²⁷ Sb	¹²⁸ Sb	¹²⁹ Sb	¹³⁰ Sb (40m)	¹³¹ Sb	¹³² Sb (4 min)	¹³³ Sb	¹³⁴ Sb	51
¹²⁶ Sn	¹²⁷ Sn	¹²⁸ Sn	¹²⁹ Sn (2 min)	¹³⁰ Sn	¹³¹ Sn	¹³² Sn N/Z=1.6	¹³³ Sn	50
76	77	78	79	80	81	82	83	
· _ · _ · _ · _ · _ · _ · _ · _ ·								

S. Basak, S. S. Alam, D. Kumar, A. Saha, D. Banerjee and TB Phys. Rev. C 104, 024320 (2021).

$N \rightarrow$

D. Kumar, TB et al., Phys. Rev. C **106**, 034306 (2022)

D. Kumar,TB et al., Phys. Rev. C 109, 024304 (2024)

Competition between Tetrahedral and Octahedral Symmetries in 152 Sm Nucleus: A New set of data from a dedicated experiment

Tumpa Bhattacharjee, VECC, Kolkata

Deformed Nuclei – Rotational Symmetry breaking

Competition between Tetrahedral and Octahedral T Symmetries in ¹⁵²Sm Nucleus: A New set of data from a dedicated experiment

July 1976

Tumpa Bhattacharjee, VECC, Kolkata International Conference on Shapes and Symmetries in Nuclei – From Experiment to Theory (SSNET -2024) JC Lab, France, November 04th – 08th, 2024

Hexadekapol

<u>Nuclear Shell Gaps – Spherical & Deformed Nuclei</u>

$$\mathcal{H} = \frac{P^2}{2m} + \frac{1}{2}m[\omega_{\perp}^2(x^2 + y^2) + \omega_z^2 z^2] + C\vec{l} \cdot \vec{s} + D\vec{l} \cdot \vec{l}$$

Binding states of individual nucleons in strongly deformed nuclei

S. G. Nilsson, Kgl. Danske Videnskab. Selskab, Mat.-fys.Medd. **29**, No.16 (1955).

Competition between Tetrahedral and Octahedral Symmetries in ¹⁵²Sm Nucleus: A New set of data from a dedicated experiment

Tumpa Bhattacharjee, VECC, Kolkata

Phys. Rev. Lett. 88, 252502 (2002), Phys. Rev. Lett. 97, 072501 (2006)

$lpha_{32}\equiv t_3=0.1$	$\alpha_{32} \equiv t_3 = 0.2$	$lpha_{32}\equiv t_3=0.3$

No.	Group	No. Irr.	No.×Dimensions
01.	O_h^D	6	$4 \times 2D$ and $2 \times 4D$
02.	OD	3	$2 \times 2D$ and $1 \times 4D$
03.	T_d^D	3	$2 \times 2D$ and $1 \times 4D$
04.	C_{6h}^D	$12 \rightarrow 6$	12 x 1D
05.	D_{6h}^D	6	6 x 2D
06.	T_h^D	6	6 x 2D
07.	D_{4h}^D	4	4 × 2D
-	D_{2h}^D	2	2 x 2D (reference)

- $T_d^{D} \rightarrow$ Tetrahedral double point group (48 symmetry elements)
- 2 families of 2 fold degenerate energy levels,
- 1 family of <u>4 fold degenerate energy levels</u>

Higher fold degeneracies of nucleonic levels

>	Exotic s	symmetry	breaking	in nucl	ei
-------------	----------	----------	----------	---------	----

Competition between Tetrahedral and Octahedral Symmetries in ¹⁵²Sm Nucleus: A New set of data from a dedicated experiment

Tumpa Bhattacharjee, VECC, Kolkata

100

Courtesy: J. Dudek

Tetrahedral Magic Nuclei

Evidence of tetrahedral shape in Nuclei : Cluster state in ¹⁶O (Light nuclei)

PRL 112, 152501 (2014)

Competition between Tetrahedral and Octahedral
Symmetries in 152Sm Nucleus: A New set of data
from a dedicated experimentTumpa Bhattacharjee,
VECC, KolkataInternational Conference on Shapes and Symmetries in
Nuclei – From Experiment to Theory (SSNET -2024)
UC Lab, France, November 04th – 08th, 2024

16

16

TABLE VI. The number of states $a_i^{(l\pi)}$	belonging to the five irreducible	representations of T_d for i	integer spins; those for e	ach parity are
separately shown.				

Microscopic mean-field and residualinteraction Hamiltonians with angular-momentum and parity projection method

Lowest Irrep for T_d symmetry $A_1: I^{\pi} = 0^+, 3^-, 4^+, 6^{\pm}, 7^-, 8^+, 9^{\pm}, 10^{\pm}, 11^-, \dots \rightarrow \text{Exact } T_d \text{ pattern}$ <u>Two lowest irreps for O_h symmetry</u> $A_{1g}: 0^+, 4^+, 6^+, 8^+, 9^+, 10^+, \dots, I^{\pi} = I^+, \rightarrow \text{Exact } O_h, I_{\pi} = 0^+$ $A_{2u}: 3^-, 6^-, 7^-, 9^-, 10^-, 11^-, \dots, I^{\pi} = I^-, \rightarrow \text{Exact } O_h, I_{\pi} = 0^-$

→ Tetrahedral double point group (T_d^D) is a subgroup of Octahedral double point group (O_h^D)

Competition between Tetrahedral and Octahedral Symmetries in ¹⁵²Sm Nucleus: A New set of data from a dedicated experiment

Tumpa Bhattacharjee, VECC, Kolkata

Rotational band with $E \sim I(I+1) \rightarrow Bohr$ Theory

Lowest Irrep for T_d symmetry

 $A_1: I^{\pi} = 0^+, 3^-, 4^+, 6^{\pm}, 7^-, 8^+, 9^{\pm}, 10^{\pm}, 11^-, \dots$

$$E_I \propto \frac{\hbar^2}{2\mathcal{J}_{T_{\rm d}}}I(I+1)$$

<u>Two lowest irreps for O_h symmetry</u>

$$A_{1g}: 0^+, 4^+, 6^+, 8^+, 9^+, 10^+, \dots, I^{\pi} = I^+,$$

 $A_{2u}: 3^-, 6^-, 7^-, 9^-, 10^-, 11^-, \dots, I^{\pi} = I^-,$

$$E \propto = \frac{h^2}{2I_{A1g}} I (I+1)$$
$$E \propto = \frac{h^2}{2I_{A2u}} I (I+1)$$

Pure tetrahedral structure

$$\mathcal{J}_{A_{1g}} pprox \mathcal{J}_{A_{2u}} pprox \mathcal{J}_{A_1}$$

Competition between Tetrahedral and Octahedral Symmetries in ¹⁵²Sm Nucleus: A New set of data from a dedicated experiment

Existence of an isomeric band!!

Experimental identification becomes extremely challenging!!

Competition between Tetrahedral and Octahedral	Tumpa Bhattacharjee,	International Conference on Shapes and Symmetries in
Symmetries in 152Sm Nucleus: A New set of data	VECC, Kolkata	Nuclei – From Experiment to Theory (SSNET -2024)
from a dedicated experiment		UC Lab, France, November 04 th – 08 th , 2024

Physics Interest in ¹⁵²Sm

from a dedicated experiment

VECC, Kolkata

Physics Interest in ¹⁵²Sm

We are at Tetrahedral Magic Gap!!

At vanishing quadrupole deformation, the minima in the PES is visible for non-zero a_{32} .

≻The energy of this minima decreases with the presence of non-zero octahedral deformation.

Spin	E[keV]	No. D-out	No. Feed	Reaction
3-	1579.4	10	none	CE & α
4+	1757.0	9	1+(1)	CE & α
6-	1929.9	2	(1)	CE & α
6+	2040.1	7	none	CE & α
7-	2057.5	6	2+(1)	CE & α
8+	2391.7	3	1	CE & α
9-	2388.8	4	3	$CE\&\alpha$
9 ⁺	2588	2	1	α
10-	2590.7	4	1	α
(10 ⁺)	2810	2	none	α
11-	2808.9	2	none	CE

J. Dudek et al., PRC 97, 021302(R) (2018)

Competition between Tetrahedral and Octahedral Symmetries in ¹⁵²Sm Nucleus: A New set of data from a dedicated experiment

Tumpa Bhattacharjee, VECC, Kolkata

Population of ¹⁵²Sm

- ➢ High statistics →
 - High cross section
 - Increased Target thickness
 - High Beam current
 - High efficiency Clover HPGe array
 - Long beamtime

Keeping in mind: Limitation in Count rate in HPGe crystal 5- 6k/sec)

- Low angular momentum population
- Less contamination from neighboring evaporation channel

10

Spin(ħ)

0

5

Competition between Tetrahedral and Octahedral Symmetries in ¹⁵²Sm Nucleus: A New set of data from a dedicated experiment Tumpa Bhattacharjee, VECC, Kolkata International Conference on Shapes and Symmetries in Nuclei – From Experiment to Theory (SSNET -2024) JC Lab, France, November 04th – 08th, 2024

15

20

25

<u>Gamma Array with local collaboration in Kolkata</u> (VECC, SINP, UGC-DAE-CSR)

12 Detectors at:

90° : 6 Nos 40° : 3 Nos 125° : 3 Nos

New segments MEG, VECC

Competition between Tetrahedral and Octahedral Symmetries in ¹⁵²Sm Nucleus: A New set of data from a dedicated experiment Tumpa Bhattacharjee, VECC, Kolkata

<u>Comparison with existing experiment on</u> $^{152}\mathrm{Sm}$

P. E. Garrett et al., J. Phys. G: Part & Nucl. Phys. 31, S1855 (2005)

Performed with 9 single crystal HPGe and one Cluster HPGe detector

> Gathered 2 x 10⁹ $\gamma - \gamma$ events, Used 1 x 10⁹ $\gamma - \gamma$ events for the development of level scheme

➢ Beam energy : 22 MeV

> P/T ~ 0.28 (av)

<u>PRESENT EXPERIM</u>ENT:

≻12 Compton suppressed Clover	90 - q					 20 Me ▲ 28 Me 	× ×V	
≻Beam Energy : 26 MeV	<u>Gain</u>	- 00 -	•	•	•	• • •	PACEIN	
≻γ−γ statistics > 2 × 10 ⁹	P/T ~ 1.6	30 -	1			•••		
>P/T ~0.45	Statistics ~ 2	0 -	•			•	•••••	F
	1/sqrt(N) ~ 0.5	F	0	5	10 Spi	15 in(ħ)	20	25
competition between Tetrahedral and Octahedral ymmetries in ¹⁵² Sm Nucleus: A New set of data from a dedicated experiment	Tumpa Bhattacharjee, VECC, Kolkata	Internatí Nucleí - IJC	ional Coi - From E : Lab, Fi	nferenc ≅xperím rance, ト	e on Sh ent to T Jovemb	apes and heory (S er 04 th – 1	Symmetríu SNET -20: 08 th , 2024	es (1 24)

120

1200 ¹⁵¹Sm 152Sm 1000 ¹⁵³Sm Cross Section (mb) 800 600 400 200 0 20 22 24 26 28 30 E (MeV)

MeV

<u>Conventional γ- spectroscopy</u> <u>techniques</u>

Measured

- 1. $\gamma \gamma & \gamma \gamma \gamma$ coincidences
- 2. Angular distribution a_2 , a_4
- 3. Angular Correlation --> R_{DCO}
 - 4. Linear Polarization P

<u>Calculated</u>

 $P \mbox{ vs } R_{DCO} \mbox{ contours}$

P vs a_2 contours

Digital DAQ --> data written in Compton suppressed singles mode

Competition between Tetrahedral and Octahedral	Tumpa Bhattacharjee,	International Conference on Shapes and Symmetries in
Symmetries in ¹⁵² Sm Nucleus: A New set of data	VECC, Kolkata	Nuclei – From Experiment to Theory (SSNET -2024)
from a dedicated experiment		JC Lab, France, November 04 th – 08 th , 2024

Relative Intensity

Competition between Tetrahedral and Octahedral Symmetries in ¹⁵²Sm Nucleus: A New set of data from a dedicated experiment Tumpa Bhattacharjee, VECC, Kolkata

Competition between Tetrahedral and Octahedral
Symmetries in 152Sm Nucleus: A New set of data
from a dedicated experimentTumpa Bhattacharjee,
VECC, KolkataInternational Conference on Shapes and Symmetries in
Nuclei – From Experiment to Theory (SSNET -2024)
UC Lab, France, November 04th – 08th, 2024

Competition between Tetrahedral and Octahedral Symmetries in ¹⁵²Sm Nucleus: A New set of data from a dedicated experiment Tumpa Bhattacharjee, VECC, Kolkata

Competition between Tetrahedral and Octahedral Symmetries in ¹⁵²Sm Nucleus: A New set of data from a dedicated experiment

Tumpa Bhattacharjee, VECC, Kolkata

- ➤ Energies of 6⁺, 6⁻ levels
- ➤ Energies of 9⁺, 9⁻ levels

➤ Energies of 10⁺, 10⁻ levels

Competition between Tetrahedral and Octahedral Symmetries in ¹⁵²Sm Nucleus: A New set of data from a dedicated experiment Tumpa Bhattacharjee, VECC, Kolkata

Tetrahedral g.s.b. band 14 10 --- 12^{+} 10^{+} 81

$$\hat{H}\Psi_i = \mathcal{E}_i\Psi_i,$$

 $\hat{H} = -rac{\hbar^2}{2}\hat{\Delta} + V(q),$
 $\hat{\Delta} = \sum_{m,n=1}^{d=2} rac{1}{\sqrt{|B|}} rac{\partial}{\partial q^n} \left(\sqrt{|B|} B^{nm} rac{\partial}{\partial q^m}\right),$

- Probability density function for each of the solutions
- Quantum probability of finding the system within a deformation volume dV

$$egin{aligned} d\mathcal{P}(q) \stackrel{df.}{=} \Psi_i^*(q) \Psi_i(q) \sqrt{|B|} \, dV, \quad dV \equiv dq_1 dq_2, \ \langle q_n^2
angle \stackrel{df.}{=} \int \Psi_i^*(q) q_n^2 \, \Psi_i(q) \sqrt{|B|} \, dV, \quad dV \equiv dq_1 dq_2 \end{aligned}$$

Competition between Tetrahedral and Octahedral Symmetries in ¹⁵²Sm Nucleus: A New set of data from a dedicated experiment Tumpa Bhattacharjee, VECC, Kolkata

 $t_1^{\mathrm{dyn}} \approx 0.07 \text{ and } o_1^{\mathrm{dyn}} \approx 0$

New candidate tetrahedral sequence is pure and preserve the octahedral symmetry

Competition between Tetrahedral and OctahedralTumpa Bhattacharjee,
Symmetries in 152Sm Nucleus: A New set of data
from a dedicated experimentInternational Conference on Shapes and Symmetries in
Nuclei – From Experiment to Theory (SSNET -2024)
UC Lab, France, November 04th – 08th, 2024

Summary

- ▶ ¹⁵²Sm : Rich example of shapes and shape co-existence
- > The first tetrahedral candidate band was proposed in 2018
- Second tetrahedral candidate band is identified in the present work
- The new band shows the signature of pure tetrahedral structure retaining the octahedral symmetry
- Both the symmetry breaking compete in ¹⁵²Sm as found from the theoretical calculations

Competition between Tetrahedral and Octahedral
Symmetries in 152Sm Nucleus: A New set of data
from a dedicated experimentTumpa Bhattacharjee,
VECC, KolkataInternational Conference on Shapes and Symmetries in
Nuclei – From Experiment to Theory (SSNET -2024)
UC Lab, France, November 04th – 08th, 2024

Collaborators

Abhijit Bisoi, sangeeta Das, Rozina Rahaman, Anik Adhikari, Arkadip Bera, Yajnya Sapkota, Ananya Das

Devesh Kumar, Shefali Basak, Anandagopal Pal, Safikul alam, Arindam Kumar Sikdar, Joydip Nandi, Parnika Das

Saradindu Samanta, Suvronil Chatterjee, Rajarshi Raut, Sandeep S. Ghugre

Arunabha Saha

Arnab Bhattacharyya, Priyabrato Das, Ushasi Datta

Jaipur Sathi Sharma

Irene Dedes, A. Gaamouci

Jerzy Dudek, Gilbert Duchene, Dominique Curien

J. Yang

Tumpa Bhattacharjee, VECC, Kolkata

Acknowledgement:

Dr. Sumit Som, Director, VECC, Kolkata

Prof. Jane Alam, Ex Head, Physics Group, VECC, Kolkata

Prof Sukalyan Chattopadhyay, Ex Head Physics Group, SINP, Kolkata

Dr. Sandip Ghugre, Director, UGC-DAE-CSR, Kolkata

Thank you for your attention!!

Competition between Tetrahedral and Octahedral Symmetries in ¹⁵²Sm Nucleus: A New set of data from a dedicated experiment

Tumpa Bhattacharjee, VECC, Kolkata

$\gamma - \gamma$ Matrix & $\gamma - \gamma - \gamma$ cube – Development of level scheme

from a dedicated experiment

VECC, Kolkata

11C Lab, France, November 04th - 08th, 2024

Angular Distribution measurement for determination of Multipolarity

 $\begin{array}{c|c} & J_{i} \\ \hline \gamma & L1, L2, \delta \\ \hline & J_{f} \end{array} \end{array} W(\theta) = A_{0} + A_{2}P_{2}(\cos\theta) + A_{4}P_{4}(\cos\theta) = A_{0}[1 + a_{2}P_{2}(\cos\theta) + a_{4}P_{4}(\cos\theta)]$

Competition between Tetrahedral and Octahedral Symmetries in ¹⁵²Sm Nucleus: A New set of data from a dedicated experiment

VECC, Kolkata

DCO Ratio for determination of Multipolarity

 $DCO(\gamma_1) = \frac{I_{\gamma_1}(125^\circ), \text{ gated by } \gamma_2 \text{ at } 90^\circ}{I_{\gamma_1}(90^\circ), \text{ gated by } \gamma_2 \text{ at } 125^\circ}$

For 418 keV transition (E2) : $R_{DCO} = 0.98(2)$ in Quadrupole gate

For 799 keV transition (E1) : R_{DCO} = 0.67(1) in Quadrupole gate

For 251 keV transition (E1) : $R_{DCO} = 1.1(1)$ in Dipole gate For 446 keV transition (E2) : $R_{DCO} = 1.6(2)$ in Dipole gate

Competition between Tetrahedral and Octahedral
Symmetries in 152Sm Nucleus: A New set of data
from a dedicated experimentTumpa Bhattacharjee,
VECC, KolkataInternational Conference on Shapes and Symmetries in
Nuclei – From Experiment to Theory (SSNET -2024)
UC Lab, France, November 04th – 08th, 2024

Linear Polarization - Determination of Parity

Experimental Method of Linear Polarization Measurement

$$P(\theta) = \frac{IPDCO}{Q(E_{\gamma})} \qquad \qquad Q(E_{\gamma}) = Q_0(a+b\times E_{\gamma}),$$

$$Q_0 = \frac{(1+\alpha)}{(1+\alpha+\alpha^2)}$$
 with $\alpha = \frac{E_{\gamma} \text{ (keV)}}{511}$

 \mathbf{Q}_0 = polarization sensitivity for the ideal Compton polarimeter

Competition between Tetrahedral and Octahedral Symmetries in ¹⁵²Sm Nucleus: A New set of data from a dedicated experiment Tumpa Bhattacharjee, VECC, Kolkata

<u>R_{DCO} & IPDCO values in ¹⁵²Sm</u>

Competition between Tetrahedral and Octahedral
Symmetries in 152Sm Nucleus: A New set of data
from a dedicated experimentTumpa Bhattacharjee,
VECC, KolkataInternational Conference on Shapes and Symmetries in
Nuclei – From Experiment to Theory (SSNET -2024)
UC Lab, France, November 04th – 08th, 2024

Calculation of angular distribution coefficients, DCO Ratio and Polarization

Competition between Tetrahedral and Octahedral
Symmetries in 152Sm Nucleus: A New set of data
from a dedicated experimentTumpa Bhattacharjee,
VECC, KolkataInternational Conference on Shapes and Symmetries in
Nuclei – From Experiment to Theory (SSNET -2024)
UC Lab, France, November 04th – 08th, 2024

Thank You

Array Configuration

$$P(\theta) = (\pm) \frac{\sum_{\nu} a_{\nu} \kappa(l, l') P_{\nu}^2(\cos\theta)}{1 + \sum_{\nu} a_{\nu} P_{\nu}(\cos\theta)}.$$

A. Pal et al, Unpublished, under review.

Nuclear Structure @ Tetrahedral Shape

Gain drift \rightarrow 80 sets of list files to be sorted \rightarrow 76 matrices with pixisort [S. Das et al., NIMA **893**, 138(2018)] that were added to generate the matrix