

Cluster formation in neutron-rich unstable isotopes investigated by means of quasi-free scattering reaction

D.Beaumel IJCLab, Orsay, France

1

- > Introduction: clustering in light nuclei
- > Quasi-free scattering reactions
- > RIKEN experiment on n-rich beryllium isotopes
 - ✓ Results Alpha-cluster structure
 - ✓ Beyond alpha clustering
- Conclusions and outlooks

Clustering in light nuclei

The Ikeda diagram For N=Z=2n "alpha-conjugate" nuclei

K.Ikeda, N.Takigawa, H.Horiuchi, PTP (1968)

- Cluster structure typically occurs close to cluster decay thresholds
- Based on properties of some near threshold states
 - Rotational bands with molecule-like structure
 Very large moment of inertia
 - ✓ Large alpha-decay widths

Light neutron-rich nuclei

Antisymmetrized Molecular Dynamics (AMD) Y.Kanada-En'yo, H.Horiuchi, Front. Phys. 13 (2018)

Clustering in beryllium isotopes – AMD calculation

Calculations of density distributions for Be isotopes

DDME2 relativistic functional in rel. HB calculations

J.P.Ebran, E.Khan,T.Niksic, D.Vretenar, PRC90 (2014)

^{8,10}Be isotopes in no-core Monte-Carlo Shell Model

T.Otsuka, T.Abe et al., Nature comm. 2022

$A(p,p\alpha)B$ in the Distorted Wave Impulse Approximation (DWIA)

Transition amplitude

$$T_{P_0P_1P_2} = \left\langle \chi_{1,P_1}^{(-)}(R_1) \, \chi_{2,P_2}^{(-)}(R_2) \, \left| t_{p\alpha}(s) \right| \, \chi_{0,P_0}^{(+)}(R_0) \, \varphi_{\alpha}(R_2) \right\rangle$$

 $\chi_{0,P_0}^{(+)}(R_0) \quad \chi_{1,P_1}^{(-)}(R_1) \quad \chi_{2,P_2}^{(-)}(R_2)$ distorted waves for p-A, p-B and α -B obtained from elastic scattering data

 $t_{p\alpha}(s)$ Transition interaction

 $\varphi_{lpha}\left(R_{2}
ight)$ Cluster Wave function

- Phenomenological
- Microscopic (AMD, ab initio ...)

Analysis using microscopic cluster WF

"Test" case : reanalysis of ${}^{20}Ne(p,p\alpha){}^{16}O$ data at 101.5 MeV/u

K.Yoshida et al., PRC 99, 064610 (2019)

$(p,p\alpha)$ represents a quantitative probe for a-clustering in light nuclei

SAMURAI12 experiment: Study of 10,12,14 Be(p,p α) at 150 MeV/u

Excitation energy spectra

σ (⁶He^{GS}) = 1.1 MeV

 σ (8He^{GS}) = 1.1 MeV

THSR-based calculations for ${}^{10}Be(p,p\alpha) {}^{6}He^{(GS)}$ at 250 MeV/u

M.Lyu et al., PRC 97 (2018)

Tohsaki, Horiuchi, Schuck, Röpke (THSR) Wave-Function Well adapted to discuss cluster states in light nuclei

- → Cluster wave-function overlap of ¹⁰Be and ⁶He
- → Optical potentials folding of calculated density with interaction

Triple differential cross-section for ¹⁰Be(p, $p\alpha$)⁶He^(GS)

Triple differential cross-section for $^{12}Be(p,p\alpha)^{8}He^{(GS)}$

How about in heavier nuclei ?

J.Tanaka et al., Science 371, 260 (2021)

Need rescale imaginary potential depth in Xsection calculations

Formation of clusters in infinite nuclear matter

Generalized DFT calculations

S.Typel, J.Phys.Conf.Ser.420,012078(2013)

Neutron-rich clusters might well be predominant

Z.-W. Zhang and L.-W Chen, Phys. Rev. C 95, 064330 (2017)

Clustering evolution towards the dripline

- Q. Zhao, Y. Suzuki, J. He, B. Zhou, M. Kimura, EPJA 157 (2021)
- AMD calculations using Gogny D1S functional

Hindrance effect due to neutron skin ?

Alternative interpretations

- Neutron single-particle configurations
- > Relationship between α -clustering and α -threshold

H.Motoki, et al, PTEP (2022)113D01 - AMD calculations using Gogny D18

- \succ Hindrance of α clustering
- Development of ⁶He clutering

Search for triton formation at the surface of ¹⁴Be

Conclusions/Prospects

- First measurement of 10,12,14 Be(p,p α) in inverse kinematics with RIB with proper kinematical conditions
- Shape and magnitude of the TDX for 10 Be(p,p α)⁶He^{GS} are very well reproduced by DWIA calculations using microscopic α -cluster wave-functions, directly validating the $2\alpha + 2n(\pi)$ molecular structure of 10 Be
- For ¹²Be(p,pα)⁸He^{GS} TDX calculations slightly overestimate the measured distribution, indicating a more compact GS of ¹²Be than predicted Next: with ¹⁴Be data we'll quantitatively probe alpha-cluster evolution up to the dripline in berylliums
- We started to investigate other sort of clustering Preliminary results show sizeable formation of tritons at the surface of the halo nucleus ¹⁴Be Complementary program using transfer reaction started at GANIL
- Planned study of (p,pα) on other light n-rich isotopes at RIKEN/Samurai The TOGAXSI device will allow measurements in excellent conditions

TOtal energy measurement by GAgg and verteX reconstruction by SIlicon

J.Tanaka et al., Nucl. Instrum. Meth. in Phys. Res. B 542, 4 (2023)

SAMURAI12 collaboration

HKU: S.D. Chen, J. Lee, <u>P.J. Li</u>, P.F. Liang, T. Lokotko, X. X. Xu
IJC Lab: M. Assié, <u>D. Beaumel</u>, S. Franchoo, F. Hammache, E. Rindel, I. Stefan
RIKEN: H. Baba, T. Harada, T. Isobe, N.Kitamura, Y. Kubota, H. Otsu, V. Panin, M. Sasano, <u>D. Suzuki</u>, T. Uesaka, <u>J. Zenihiro</u>
Tohoku Univ: <u>Y. Matsuda</u>, T. Kobayashi
TU Darmstadt: A. Frotscher, H.N. Liu, Y.L. Sun, J. Tanaka, A. Obertelli
LPC Caen: L. Achouri, J. Gibelin, F. M. Marqués, N. Orr
TiTech: Y. Kondo, A. Kurihara, H. Miki, T. Nakamura, T. Tomai, H. Yamada, M. Yasuda
RCNP /Osaka: M.J. Lyu, <u>K. Ogata, K. Yoshida, Y. Kanada-En'yo</u>
NIPNE: A.I. Chilug, D.Tudor, L.Trache;
CENS: L.Stuhl, D. Kim, K.I. Hahn
PKU: J. Gao, Z. H. Yang ; CEA Saclay: A. Corsi, A. Gillibert
Rikkyo Univ: Y.Togano; INFN: G. Cardella

cea

BACKUP SLIDES

From TDX to QDX (quadruple diff Xsection)

Shape strongly governed by PV

Divergence issues in inverse kinematics

QDX for ¹²Be(p, $p\alpha$)⁸He^(GS)

More complex WF than ¹⁰Be

THSR main configurations for neutrons (revised) :

