

05/11/24

SSNET'24

International Conference on Shapes and Symmetries in Nuclei: from Experiment to Theory

Orsay, 4 - 8 November 2024

Neutron-proton pairing in the unstable N=Z nuclei of the *f*-shell through two-nucleon transfer reactions

M. Assié, H. Jacob, IJCLab Orsay, assie@ijclab.in2p3.fr

Transfer to study pairing

- General introduction
- stable isotopes : sd-shell
- unstable nuclei: *fp* shell
 - recent results
 - future studies

T=11 J=0 T=1 J=1 T=0 T=0 $\Delta V_{np} = 1/4[B(N,Z)-B(N,Z-2)-B(N-2,Z)+B(N-2,Z-2)]$ Double binding energy difference (MeV) 0 : initiation N≠Z -1 adapted from O. Juillet N=Z -2 fp shell -3 sd shell -4 N≠Z -N=Z - p shell -5 - N=Z - sd shell A -- N=Z - fp shell -6 p shell -7 -8 10 20 30 50 0 40 **Proton Number**

Neutron-proton pairing : generalities

- np pairing occurs in 2 different states:
 -T=1 (isovector)
 - -T=0 (isoscalar) <-- unique in np pairs

Manifestations of np pairing

- deuteron : only mass-2 nucleus to be bound
- overbinding of N=Z nuclei --> effect of shells

Where to search for np pairing?

- N=Z nuclei
- stronger in high-j orbitals --> fp shell

The question is whether or not the T=0 pairing can create a correlated state in analogy with the BCS superfluid phase.

How to probe neutron-proton pairing experimentally ?

Possible experimental probes for pairing

B. Cederwall et al, PRL 124, 062501 (2020) /Kaneko et al NPA 957 (2017) 144

Masses - BE differences

can be described by an appropriate combination of the symmetry energy and the isovector pairing energy \rightarrow Evidence for **full isovector pairing** (nn,np,pp) - charge independence A.O. Macchiavelli PRC (2000), A.O. Macchiavelli PLB (2000)

- Heavy nuclei
 accessible
- "simple" observable

Heavy nuclei accessible

- Model dependence
- knock-out probes spatial correlations not clear for pairing
- smoking-gun ?
- difficult due to beam intensities

- Knock-out reactions
 - What kind of information can we get ? --> not explored experimentally yet E.C. Simpson, J.A. Tostevin, Fifty years of BCS, 468

Deuteron transfer reaction

Rotational properties ("delayed alignments")

recently shown to be compatible with strong T=0 np pairs

Two-nucleon transfer matrix element for pairing analogous to B(E2)'s for the quadrupole case. Piet Van Isacker PRL (2005)/ Brink, Broglia Nuclear superfluidity

np pair transfer reactions

to be studied

DL=0,2 deuteron-like 0

$$T=0 \xrightarrow{\Delta T=1} 2Z \xrightarrow{\Delta T=1} 2(Z\pm 1)(Z\pm 1)$$

reaction	selectivity
(p, ³ He)	ΔT=0,1
(³ He,p)	ΔT=0,1
(d,α)(α, ⁶ Li)	ΔΤ=0
(α,d)(⁶ Li, α)	ΔΤ=0

The usual observable for np transfer is the ratio $d\sigma (0^+)/d\sigma (1^+)$ that gives the relative strength of T=1/T=0 pairing.

State-of-the-art for two-nucleon addition modes

Adapted from Frauendorf, Macchiavelli, Prog. Part. Nucl. Phys. 78(2014)

- sd-shell systematic measurement (stable nuclei)
 From litterature & ENSDF:
 - max of cross-section (lowest angle measured)
 - no error bars
 - first 0+ and first 1+ states (no centroid)

□ <u>Recent consistent remeasurement</u> for (³He,p): Y. Ayyad et al, PRC96 (2017) (open squares)

▶ fp shell measurements :

⁴⁴Ti(³He,p)⁴⁶V
 in inverse kinematics @ Argonne
 (A.O. Macchiavelli et al)

State-of-the-art of two-nucleon transfer (adding & removing)

Disclaimer :

- Ratios from different experiments and at different energies
- □ L=0 and L=2 contributions mixed --> angular distributions needed

- sd-shell systematic measurement (stable nuclei)
 From litterature & ENSDF:
 - max of cross-section (lowest angle measured)
 - no error bars
 - first 0+ and first 1+ states (no centroid)
 - <u>Recent consistent remeasurement</u> for (³He,p) and (p,³He): Y. Ayyad et al, PRC96 (2017) (open symbols)

▶ fp shell measurements :

⁴⁴Ti(³He,p)⁴⁶V
 in inverse kinematics @ Argonne
 (A.O. Macchiavelli et al)

 $\Box \quad \frac{{}^{56}\text{Ni}, \, {}^{52}\text{Fe}, \, {}^{48}\text{Cr}(p, {}^{3}\text{He}){}^{54}\text{Co}, {}^{50}\text{Mn}, {}^{46}\text{V}}{}:$

in inverse kinematics @ GANIL (H. Jacob, M. Assié, B. Le Crom et al)

Experimental set-up on LISE @ GANIL

ASSIE Marlène - SSNET 2024

05/11/24

MUST2

300

Comparison with DWBA

B. Le Crom et al, PLB (2022)

Experimental and theoretical cross-sections

-	σ (0+,T=1) (μb)	σ(1+,T=0) (μb)
	⁵⁶ Ni(p, ³ He) ⁵⁴ Co	
this work	$109 \stackrel{stat}{\pm} 5 \stackrel{sys}{\pm} 10$	$17 \stackrel{stat}{\pm} 7 \stackrel{sys}{\pm} 2$
SP	73	19
GXPF1	136	21
⁵² Fe(p, ³ He) ⁵⁰ Mn		
this work	$145 {}^{stat}_{\pm} 12 {}^{sys}_{\pm} 15$	$16^{+29}_{-16} \pm 2$
SP	69	16
GXPF1	257	17

- Cross-sections for 1+ state very small and well reproduced with DWBA+GXPF1
- Large cross-sections for the g.s. but overestimated by the calculation (particularly for ⁵²Fe)

DWBA calculations

with form factors from Sagawa-san team including other shells than f_{7/2} (pairing case) using GXPF1 interaction
 with single particle form factors (no pairing case)
 Potentials set from ⁵⁶Ni(p,d) measurement

Comparison with DWBA

B. Le Crom et al, PLB (2022)

Experimental and theoretical cross-sections

	$\sigma(0+,T=1) (\mu b)$	σ(1+,T=0) (μb)
	⁵⁶ Ni(p, ³ He) ⁵⁴ Co	
this work	$109 \stackrel{stat}{\pm} 5 \stackrel{sys}{\pm} 10$	$17 \stackrel{stat}{\pm} 7 \stackrel{sys}{\pm} 2$
SP	73	19
GXPF1	136	21
⁵² Fe(p, ³ He) ⁵⁰ Mn		
this work	$145 {}^{stat}_{\pm} 12 {}^{sys}_{\pm} 15$	$16^{+29}_{-16} \pm 2$
SP	69	16
GXPF1	257	17

Angular distribution for g.s. of ⁵⁴Co

DWBA calculations

with form factors from Sagawa-san team including other shells than f_{7/2} (pairing case) using GXPF1 interaction
 with single particle form factors (no pairing case)
 Potentials set from ⁵⁶Ni(p,d) measurement

Direct vs. sequential ?

correlations kept in the sequential transfer Potel, Rep. Prog. Phys. 76 (2013) 106301

Comparison with DWBA

B. Le Crom et al, PLB (2022)

Systematic of ratios of CS

- Good agreement between exp and DWBA+pairing (although with large error bars)
- □ T=1 ~ superfluid

ASSIE Marlène - SSNET 2024

□ T=0 very weak due to the effect of spin-orbit that hinders T=0 pairing in the *fp*-shell.

 $\begin{array}{l} \mathsf{T=1}\;(1\mathsf{f}_{7/2})^2\;\&\;(1\mathsf{f}_{5/2})^2\\ \mathsf{T=0}\;(1\mathsf{f}_{7/2})^2\;\&\;(1\mathsf{f}_{5/2})^2\;\&(1\mathsf{f}_{7/2})(1\mathsf{f}_{5/2}) \end{array}$

□ Effect of other channels ?

T=0 pairing weakened by the contributions of ${}^{1}P_{1}$ and Dwave (repulsive). Baroni et al, PRC (2010)

Interplay between pairing and deformation

- Case of ⁴⁸Cr : comparison with ratios predicted by DWBA calculations for 2 cases:
 - single particle case (no pairing)
 - np pairing through TNA from Shell Model + GXPF1 calculations (pairing)

- Recent calculations combining deformation and pairing
 D. Gambacurta, D. Lacroix, Phys. Rev. C 91 (2015)
 - --> It affects mainly the T=1 component
 - --> The ratio could be lowered by a factor of about 3

The main goal of the experiment is to measure the ratio σ (0⁺)/ σ (1⁺) for ⁴⁸Cr(p,³He)⁴⁶V to compare with theoretical predictions.

MUGAST@LISE at GANIL

Goal of the experiment : measure cross-DeltaE [MeV] section for removing a neutron-proton pair (T=0 or T=1) from 48 Cr (β =0.35) via the reaction ${}^{48}Cr(p, {}^{3}He\gamma){}^{46}V$ MUST2 ²⁰ **ZDD** es [MeV] CATS EXOGAM

H. Jacob, IJCLab (PhD)

ToF CATS-ZDD

05/11/24

ToF CATS-ZDD

Conclusion and perspectives

Overview of np pairing investigation through 2Ntransfer (adding and removing)

- sd-shell and fp-shell --> consistent with T=1 superfluid pairing,
- *fp*-shell : clear hindrance of T=0 pairing (very weak cross-sections)
- Challenge for the next coming years : reach higher-j nuclei !

Thank you for your attention and thank you to

H. Jacob (PhD), M. Assié, <u>V. Girard-Alcindor</u>, Y. Blumenfeld, Ö. Aktas, D. Beaumel, J. Béquet, S. Bottoni, E. Clément, G. De France, Q. Delignac, F. De Oliveira, N. De Séréville, L. Dienis, S. Franchoo, F. Galtarossa, A. Gottardo, F. Hammache, M. Kaci, S. Koyama, A. Lemasson, M. Lozano González, I. Matea, O. Nasr, C. Paxman, S. Pigliapoco, F. Rotaru, O. Sorlin, M. Stanoiu, I. Stephan, J.C. Thomas, T. Roger, L. Zago

IJCLab, GANIL, INFN-Milano, INFN-Padova, LNL, LP2IB, USC, U. of Surrey, NIPNE

B. Le Crom^a, M. Assié^{a,*}, Y. Blumenfeld^a, J. Guillot^a, H. Sagawa^b, T. Suzuki^c, M. Honma^b, N.L. Achouri^d, M. Aouadi^d, B. Bastin^e, R. Borcea^f, W.N. Catford^g, E. Clément^e, L. Cáceres^e, M. Caamaño^h, A. Corsiⁱ, G. De France^e, M-C. Delattre^a, F. Delaunay^d, N. De Séréville^a, Q. Deshayes^d, B. Fernandez-Dominguez^h, M. Fisichella^j, S. Franchoo^a, A. Georgiadou^a, J. Gibelin^d, A. Gillibertⁱ, F. Hammache^a, O. Kamalou^e, A. Knapton^g, V. Lapouxⁱ, S. Leblond^d, A.O. Macchiavelli^k, F.M. Marqués^d, A. Matta^{g,1}, L. Ménager^e, P. Morfouace^{a,2}, N.A. Orr^d, J. Pancin^e, X. Pereira-Lopez^{d,h}, L. Perrot^a, J. Piot^e, E. Pollaccoⁱ, D. Ramos^{h,3}, T. Roger^e, F. Rotaru^f, A. M. Sánchez-Benítez^{1,4}, M. Sénovilleⁱ, O. Sorlin^e, M. Stanoiu^f, I. Stefan^a, C. Stodel^e, D. Suzuki^{a,5}, J-C Thomas^e, M. Vandebrouck^{e,6}

^aUniversité Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France ^bCenter for Mathematical Sciences, University of Aizu, Aizu-Wakamatsu, Fukushima 965-8580, Japan ^cDepartment of Physics, College of Humanities and Sciences, Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550, Japan ^dLaboratoire de Physique Corpusculaire de Caen, ENSICAEN CNRS/IN2P3, 14050 Caen, France ^eGrand Accélérateur National d'Ions Lourds (GANIL), CEA/DRF-CNRS/IN2P3, Bvd Henri Becquerel, 14076 Caen, France ^fHoria Hulubei National Institute of Physics and Nuclear Engineering, Magurele, Romania ^gDepartment of Physics, University of Surrey, Guildford GU2 5XH, United Kingdom ^hIGFAE and Dpt. de Física de Partículas, Univ. of Santiago de Compostela, E-15758, Santiago de Compostela, Spain ⁱIRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France ^jLaboratori Nazionali del Sud, Instituto Nazionale di Fisica Nucleare, Catania, Italy ^kNuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA ^lNuclear Physics Center, University of Lisbon, P-1649-003 Lisbon, Portugal