

SSNET'24, 4th-8th November 2024

- Introduction to DESPEC and FAIR
- Experimental setups
- Physics highlights
- > Upcoming plans

Research Program

Introduction to DESPEC and FAIR

Experimental setups

- Physics highlights
- > Upcoming plans

- DESPEC (DEcay SPECtroscopy) is part of the HISPEC/DESPEC collaboration at GSI/FAIR within the NUSTAR pillar
- Shedding light on the evolution of shell structure and exotic nuclear shapes in uncharted nuclear territory
- Spectroscopic information for the nucleosynthesis of heavy nuclei
 - GSI/FAIR provides unique opportunities for key N~126 nuclei
- Towards a full picture of the beta-decay process around third **r-process peak**
- Nuclear structure around ¹⁰⁰Sn (and ¹³²Sn)

- \checkmark one ion per hour
- Sensitive to nuclear lifetimes spanning
- ✓ 13 orders of magnitude (10ps-100s)
- Measurement of
- ✓ any mode of nuclear decay

DESPEC in FAIR Phase-0

FAIR Phase-0 operation began in 2019 FAIR instrumentation and setups at GSI facilities DESPEC (physics) commissioning carried out in early 2020 Experimental campaigns in 2021, 2022, and 2024, planned for 2025 Future experiments at new Super-FRS facility starting (Early Science) in 2027

Research Program

Introduction to DESPEC and FAIR

Experimental setups

Physics highlights

> Upcoming plans

Upgraded Fast-Timing Hybrid Array

Hybrid configuration for simultaneous high-precision spectroscopy and fast-timing measurements

12 DEGAS triple-cluster HPGe detectors **36 FA**st **TIM**ing Array (**FATIMA**) LaBr₃(Ce) detector modules

(Two) **AIDA** 1-mm thick double-sided Si strip detectors

(Two) βPlast detectors: 3-mm thick fast plastic scintillators

- > Introduction to DESPEC and FAIR
- Experimental setups
- Physics highlights
- Upcoming plans

Prolate-oblate shape transition at ¹⁹⁰W

Werner (TU Darmstadt), Regan (Surrey), Jolie (Cologne)

- Ground states of neutron-rich nuclei with A~190 exhibit evolution from prolate to oblate deformation
- Steep decrease in $R_{4/2} = E(4^+_1)/E(2^+_1)$ indicates shape change at ¹⁹⁰W (Z = 74, N = 116)

• Information on reduced (quadrupole) transition strength $B(E2; 2^+_1 \rightarrow 0^+_1)$ required to characterise nature of transition

3.4 Rigid-rotor 3.4 3.3 Hf(Z=72)3.2 W(Z = 74)3.2 Os(Z=76) ---- N=110 3.1 Pt(Z=78) 3.0 E(4⁺)/E(2⁺) 8.7 8.7 8.7 E(4+)/E(2+) 8 6 7 8 7 8 7 -N=112 ----- N=114 ►N=11 2.7 v-soft N=118 190\٨ 2.6 2.4 2.5 2.4 2.2 106 108 110 112 118 120 122 114 116 74 76 80 70 72 78 N 7 E. Şahin, V. Werner et al., Phys. Lett. B 857, 138976 (2024)

• Fragmentation of ²⁰⁸Pb @ 1GeV/u on ⁹Be target

• Nuclei of interest transmitted and identified by FRS and stopped inside DESPEC Fast-Timing Hybrid Array

Prolate-oblate shape transition at ¹⁹⁰W

Werner (TU Darmstadt), Regan (Surrey), Jolie (Cologne)

- ¹⁹⁰W produced in 10⁻ isomeric state (neutron $K^{\pi} = 10^{-}$, 9/2⁻[505]11/2⁺[615] configuration)
- Lifetime of 2⁺₁ state extracted using Generalised Centroid Difference (GCD) Method

Prolate-oblate shape transition at ¹⁹⁰W

Werner (TU Darmstadt), Regan (Surrey), Jolie (Cologne)

- Combined approach of scaling effective boson charge e_B and differing values of e_{π} and e_v best reproduces data
- Continued decrease of B(E2) values beyond N=116 not in line with expectations of shape transition
 - -> due to approach to N=126 closure (i.e. decreased number of bosons in IBM2)

EDF-IBM2: the effective charges (p = n = 0.13 eb) EDF-IBM2- $\pi\nu$ N: the effective charges (p = 0.145 eb and n = 0.2175 eb)

E. Şahin, V. Werner et al., Phys. Lett. B 857, 138976 (2024)

Albers (GSI), Grahn (JYFL), Petrache (Paris-Saclay), Werner (TUDa)

HI SPE

- Rare-earth nuclei mid-way between Z=50,82 and N=82,126 are highly collective
- ¹⁷⁰Dy (N=104), doubly-midshell, highest $N_{\pi}N_{\nu}$ of any nucleus with A<208
- $P = N_{\pi}N_{\nu}/(N_{\pi}+N_{\nu})$ highest at ¹⁷⁰Dy; very low 2⁺₁ values of Nd chain interpreted as **deformed shell closure** at Z=60 (e.g. Hartley *et al.*, Phys. Rev. C 105 (2022) 014301)

• **Discontinuities** in $E(2_1^+)$ and $B(E2; 2_1^+ \rightarrow 0_1^+)$ approaching mid-shell with increasing $N_{\pi}N_{\nu}$ can indicate deformed shell closure(s)

[1] Y.X. Liu *et al.*, J. Phys. G: Nucl. Part. Phys. 47, 055108 (2020) [3] M. Vilen et al., PRL **120**, 262701 (2018) [2] Z. Patel et al., PRL **113**, 262502 (2014) [4] J. Wu et al., PRL **118**, 072701 (2017)

Neutron-rich, rare-earth nuclei approaching N=104

Albers (GSI), Grahn (JYFL), Petrache (Paris-Saclay), Werner (TUDa)

Conclusions on presence (and location) of possible deformed shell gaps from various experimental methods (e.g.) isomer decay spectroscopy [2], masses [3], β -decay halflives [4], decay properties [5],...

- PSM calculations location and size of subshell gaps highly-dependent on deformation and neutron number [1]
- Additional spectroscopic data for this region sorely needed
- DESPEC experiment using upgraded fast-timing hybrid array ٠
- Neutron-rich nuclei produced via fragmentation of newly-٠ developed, high-energy (~1 GeV/u) ¹⁷⁰Er beam
- Main Experimental Goals: .

- Lifetimes of 2^{+}_{1} (and other) states in even-even neutron-rich Dy, Gd and Sm isotopes
- Level structures of poorly-known nuclei after beta decay
- New data on isomeric decays, search for new isomers ٠

(a)

250

ε_=0.250

[5] D.J. Hartley et al., PRL 120, 182502 (2018)

Albers (GSI), Grahn (JYFL), Petrache (Paris-Saclay), Werner (TUDa)

Spectra courtesy of Johan Emil Linnestad Larsson and Jeroen Bormans (PhD students, TUDa and GSI)

=104 FAIR = = 104

Albers (GSI), Grahn (JYFL), Petrache (Paris-Saclay), Werner (TUDa)

- $K^{\pi} = 4^{-}$, 0.57-µs isomer in ¹⁶⁸Dy observed at RIKEN using U beam [1]
- $K^{\pi} = 4^{-}$ and 6^{-} isomers have been observed in N=102 isotones
- No such 6⁻ isomer previously observed (expected ~1.6 MeV)

[1] G.X. Zhang *et al.*, PLB 799 (2019) 135036

- Many new transitions observed in new data, including 6⁺→4⁺, 248keV transition
- Evidence of new isomeric state(s)
- Ongoing work to develop level schemes and measure lifetimes with FATIMA

Albers (GSI), Grahn (JYFL), Petrache (Paris-Saclay), Werner (TUDa)

- Level scheme of ¹⁵⁷Sm recently greatly expanded via β decay of ¹⁵⁷Pm (D.J. Hartley *et al.*, Phys. Rev. C 110 (2024) 044319)
- New transitions observed and indication of new ~µs isomer in ¹⁵⁷Sm in DESPEC data
- K^π=15/2⁺ and 17/2⁻ isomers already observed in heavier Sm isotopes ^{159,161}Sm, respectively (Z. Patel *et al.*, Phys. Rev. C (2017) 034305)

FAIR 🖬 📻 💼

¹⁶¹Sm (N=99)

 $K^{\pi} = 17/2^{-1}$

v: 7/2⁺[633]

 π : 5/2⁻[532],5/2+[413]

¹⁵⁹Sm (N=97)

 $K^{\pi} = 15/2^{+}$

v: 5/2⁻[523]

 π : 5/2⁻[532],5/2⁺[413]

- Introduction to DESPEC and FAIR
- Experimental setups
- Physics highlights
- > Upcoming plans

Interplay of collectivity and single particle properties below ¹⁰⁰Sn

Cederwall (KTH Sweden), Algora (Valencia), Górska (GSI), Regan (Surrey), Ruotsalainen (JYFL)

- Region of interest between closed neutron shell at N=50 and N=Z line
- Rotational band in ⁸⁸Ru similar to known states in self-conjugate ⁸⁴Mo
- 'Missing' 16⁺ spin-trap isomer in ⁸⁴Mo not yet observed
- Ground-state lifetimes affect rp-process flow and determine directly the amount of nuclei produced in X-ray bursts

πg_{9/2}p_{1/2}

- Experiment planned in February 2025, fragmentation of ¹⁰⁷Ag
- Full DEGAS Setup in close configuration
- B. Cederwall *et al.*, PRL 124 (2020) 062501 B. S. Nara Singh, *et al.*, PRL 107 (2011) 172502

Courtesy of M. Górska

NUSTAR Low-Energy Cave

- DESPEC campaigns at GSI/FAIR in 2020-2022 and 2024
- Suite of state-of-the-art detector systems tailored to experimental goals
- Physics highlights in 2024:
 - ✓ 2⁺₁ lifetime of prolate-oblate transitional nucleus ¹⁹⁰W published
 - Rich spectroscopic data collected via fragmentation of ¹⁷⁰Er beam on a number of neutron-rich rare earth isotope data analysis ongoing...

Upcoming...

- Construction of FAIR progresses well; new Super-FRS to be operational in 2027 with SIS-100 synchrotron commissioning in 2028
- Current open PAC Call for experiments in 2026-2027

A. Algora, G. Benzoni, B. Bles, J. Bormans, B. Das, D. Das, B. Cederwall, C. Chatel, Z. Chen,
T. Davinson, F. Drent, E. Gandolfo, J. Gerl, M. Górska, T. Grahn, H. Heggen, P. Herrmann,
N. Hubbard, C. Jones, A. Jungclaus, I. Kojouharov, G. Kosir, N. Kurz, J.E.L. Larsson, G.-s.
Li, M. Mikolajczuk, A. Morales, C.M. Petrache, N. Pietralla, Zs. Podolyak, W. Poklepa, M.
Polettini, M. Reece, P. Regan, D. Rodriguez, E. Sahin, H. Schaffner, J-L. Tain, J. Vesic, V.
Werner, M. Wiebusch, K. Wimmer, A. Yaneva, G. Zhang...

...and many more from the HISPEC/DESPEC Collaboration, and the FRS and EE Groups

A. Algora, G. Benzoni, B. Bles, J. Bormans, B. Das, D. Das, B. Cederwall, C. Chatel, Z. Chen,
T. Davinson, F. Drent, E. Gandolfo, J. Gerl, M. Górska, T. Grahn, H. Heggen, P. Herrmann,
N. Hubbard, C. Jones, A. Jungclaus, I. Kojouharov, G. Kosir, N. Kurz, J.E.L. Larsson, G.-s.
Li, M. Mikolajczuk, A. Morales, C.M. Petrache, N. Pietralla, Zs. Podolyak, W. Poklepa, M.
Polettini, M. Reece, P. Regan, D. Rodriguez, E. Sahin, H. Schaffner, J-L. Tain, J. Vesic, V.
Werner, M. Wiebusch, K. Wimmer, A. Yaneva, G. Zhang...

...and many more from the HISPEC/DESPEC Collaboration, and the FRS and EE Groups

Isomeric states in ^{188,189}Ta

Werner (TU Darmstadt), Regan (Surrey), Jolie (Cologne)

PhD work of S. Alhomaidhi (TUDa/GSI)

Górska (GSI), Regan (Surrey), Cederwall (KTH), Jolie (Cologne)

- ¹⁰⁰Sn region and the N=Z line
- Hole states dominated by 0g_{9/2} intruder orbit
- Unique structural features seniority and parity-changing isomerism, pn pairing and seniority-induced symmetries

Rest

T.Faestermann, M.Górska, H.Grawe, Prog. Part. Nucl. Phys. 69, 85 (2013)

T.Faestermann, M.Górska, H.Grawe, Prog.Part.Nucl.Phys. 69, 85 (2013) SM: R.Gross and A.Frenkel, Nucl. Phys. A 267, 85 (1976) **Isomer T**_{1/2}: Häfner *et al.*, Phys. Rev. C 100, 024302 (2019) (SM: GF interaction in the $\pi v(p_{1/2}g_{9/2})$ model space)

Main Goals:

• ⁹⁶Pd – seniority-type level scheme, ⁹²Pd nearly constant energy spacing:

.94Pd intermediate nucleus

- . Competition between isoscalar (T = 0) and
- isovector (T = 1) components of pn interaction
- Importance of cross shell (N,Z = 50) excitations
- . B(E2) values of 8⁺ and 6⁺ states below 14⁺ isomer

• Stringent test for various models and model spaces

Experiment:

- Fragmentation of ¹²⁴Xe primary beam (982 MeV/u) on a ⁹Be target
- DESPEC 'fast-timing' setup

Hybrid array of HPGe (GALILEO) and LaBr₃ (FATIMA)

GSI

 Excellent reproduction of experimental data by LSSM (GDS) calculation -> importance of core excitations in the structure of ⁹⁴Pd

GSI

 Importance of T = 0 pn interaction component in nuclear structure evolution from ⁹⁶Pd to ⁹²Pd

Quantity $[ns/e^2 fm^4]$	$I_i^{\pi} - I_f^{\pi}$			
	$14^+ \rightarrow 12^+$	$8^+ \rightarrow 6^+$	$6^+ \rightarrow 4^+$	
<i>T</i> _{1/2}	515(1)	0.755(106)	≤0.05	
$B_{exp}(E2)$	52.1(1)	205^{+34}_{-25}	≥90	
$B_{JUN45}(E2)$	113	277	496	
$B_{GDS}(E2)$	49	192	548	
$B_{g_{9/2}}(E2)$	85	115	307	
$B_{g_{9/2}T=0(pn)}(E2)$	63	152	308	
$B_{g_{9/2}T=1(pn)}(E2)$	3	12	8	
$B_{EXVAM}(E2)$ [21]	56	165	336	

A. Yaneva, S. Jazrawi et al., manuscript submitted

Seniority symmetry-breaking in ⁹⁴Ru

N=Z

Seniority symmetry-breaking in ⁹⁴Ru

B. Das, B. Cederwall *et al.*, Nature of seniority symmetry breaking in the semimagic nucleus ⁹⁴Ru, PRC Letters 105, L031304 (2022) TABLE I. Experimental mean lifetimes and B(E2) strengths in ^{94}Ru in comparison with various shell model predictions. Experimental data except for $8^+ \rightarrow 6^+$ [41, 45] are from the present work.

$I_i^{\pi} \to I_f^{\pi}$	τ	$B_{EX}(E2)$	$B_{SMLB}(E2)$	B _{SDGN} (E2)
	[ps]	$[e^2 fm^4]$	$[e^2 fm^4]$	$[e^2 fm^2]$
$8^+ \rightarrow 6^+$	$102(4) \times 10^{6}$	0.09(1)	2.0	0.77
$6^+ \rightarrow 4^+$	$91(3) \times 10^3$	3.0(2)	6.1	17.3
$4^+ \rightarrow 2^+$	32(11)	103(24)	6.8	85.2
$2^+ \rightarrow 0^+$	≤ 15	≥ 10	225	295

 v=2 to v=2 transitions should be strongly suppressed if seniority conserved

. 4⁺ \rightarrow 2⁺ transition strength greatly enhanced!

 Interpreted as constructive interference between v=2 and v=4 configurations of same spin

Core breaking in the most neutron-deficient Sn isotopes

Mengoni (Padova), Zhang (Padova)

- Experimental study of the ¹⁰⁰Sn region to assess:
 - the robustness of the **double** shell closure
 - core-breaking effects
 - the role of p-n pairing and quadrupole terms in shell

FAIR GSI

Material: Zhang, Polettini

Complementary studies approaching, at and beyond the N=126 closure

Complementary studies approaching, at and beyond the N=126 closure

