Shape coexistence and superdeformation in ²⁸Si arXiv:2404.14506 [nucl-th] (Accepted in PRC)

Dorian Frycz

Universitat de Barcelona & Institut de Ciències del Cosmos

Collaborators: J. Menéndez, A. Rios, B. Bally,

T. R. Rodríguez & A. M. Romero

Dorian Frycz (UB/ICCUB)

4 3 4 3 4 3 4

- **Coexistence** of different collective structures:
 - 1. 0_1^+ (0.0 MeV): Oblate bandhead of a rotational band
 - 0⁺₂ (5.0 MeV): Vibration of the ground state
 - 3. 0_3^+ (6.7 MeV): Prolate bandhead of a rotational band
 - 4. Superdeformed rotational band? ($E \gtrsim 10$ MeV)

Taniguchi, Y., et al. Phys. Rev. C 80, 044316 (2009)

Theoretical framework

Schrödinger equation

 $| {\cal H} | \Psi
angle = {\it E} | \Psi
angle$

- ²⁸Si: Z = N = 14 Slater determinant (**spherical!**)
- Interacting shell model: $\mathcal{H}_{eff} = \mathcal{H}_0 + \mathcal{H}_{res}$ \mathcal{H}_{res} : valence space
- Slater determinant basis {Φ_i}
- Phenomenological interactions: USDB and SDPF-NR

Caurier E., et al. Rev. Mod. Phys. 77, 427 (2005)

Valence space: $Z_v = N_v = 6$ (²⁸Si) Inert core: ¹⁶O nucleus

- E + - E +

Exact diagonalization (ISM)

- Most accurate solution of $\mathcal{H}_{eff} |\Psi\rangle = E |\Psi\rangle$
- Large set of simple Slater determinants $|\Phi_i\rangle = c_{i1}^{\dagger}c_{i2}^{\dagger}\dots c_{iA}^{\dagger}|0\rangle$
- Best suited for smaller valence spaces (sd)
- Cannot explore a single degree of freedom (Q_{λμ})

Beyond-mean-field (PGCM)

- Approximate solution to ${\cal H}_{\rm eff} |\Psi
 angle = E |\Psi
 angle$
- Smaller set of more complex wavefunctions (HFB) $\beta_k^{\dagger} = \sum_l (U_{lk}c_l^{\dagger} + V_{lk}c_l)$
- Alternative for large valence spaces (*sdpf*)
- Exploration of relevant degrees of freedom (Q_{λμ})

Spectrum of ²⁸Si (USDB)

Oblate rotational band: well described, slightly more deformed

Vibrational band based on the ground state is also well described

Prolate rotational band has too weak B(E2)

0.0

0.00

Oblate rotational band (USDB)

Prolate rotational band (USDB)

Collective wavefunctions: weight of each w.f. in the mixed state

Different deformation patterns

- Reduced deformation for J = 2 and J = 4 ($\beta \approx 0.35$)
- Weak B(E2) transition strengths: 150 ± 20 vs $50 e^2$ fm⁴

D. Frycz, J. Menéndez, A. Rios, B. Bally, T. R. Rodríguez and A. M. Romero, [arXiv:2404.14506 [nucl-th]]

Adjusted SDPF-NR^{\dagger} interaction to reproduce ²⁸Si shell gap

Additional deformation from *pf*-shell particles:

- Slight gain for oblate and vibration
- Significant gain in prolate deformation
- 1 particle in *pf*-shell
 (38% of *sdpf* 2p-2h)

[†]S. Nummela Phys. Rev. C 63,

044316 (2001)

sdpf valence space

- The SDPF-NR* interaction (*sdpf* space) **naturally** reproduces the prolate rotational band.
- Enhanced collectivity from the pf shell
- 1 particle in pf shell: 38% of sdpf 2p-2h contribution

Superdeformation

Superdeformed (SD) band predicted with:

- Deformation: $\beta \approx 1$
- 4p-4h into pf shell
- ho \sim 13 MeV bandhead

Taniguchi, Y., et al. Physical Review C, 2009. 80, 044316

Experimental attempts

- $B(E2,4^+ \rightarrow 2^+) \leq 217 e fm^2$
- Not found: $\beta_{exp} \leq 0.6$ Morris, L. et al. Phys. Rev. C **104**, 054323 (2021)

(b)

Fixed *np-nh* configurations

Analytical SU(3) models:

- *sd*-shell ($\beta \leq 0.5$)
- *sdpf* space ($\beta > 0.5$) SD for >4p-4h ($\beta \approx 0.8$)

Spherical

Superdeformed

Normal Lanczos strength function:

Decomposition of a fixed 4p-4h configuration into the fully mixed states of the Hamiltonian:

$$|0^+_{np-nh}
angle = rac{1}{N}\sum_\sigma S(\sigma)|0^+_\sigma
angle$$

Energies: 4p-4h at 18-20 MeV

- Full *sdpf* space
- Superdeformed state $(\beta \ge 0.6)$
- ~ 3 particles into the *pf* shell
- Energy: $E \approx 19 \text{ MeV}$
- In agreement with the shell model calculation

PGCM calculation in *sdpf* space with SDPF-NR* interaction:

Shape coexistence of **structures** within the *sd* shell or *sdpf*

- Exact diagonalization and variational method (PGCM)
- USDB interaction describes oblate states.
- SDPF-NR* is needed for prolate band (1 particle in *pf* shell)

Superdeformed structures appear at 18 – 20 MeV (SDPF-NR*)

Article: D. Frycz, J. Menéndez, A. Rios, B. Bally, T. R. Rodríguez and A. M. Romero, [arXiv:2404.14506 [nucl-th]]

Conclusions

Shape coexistence of **structures** within the *sd* shell or *sdpf*

- Exact diagonalization and variational method (PGCM)
- USDB interaction describes oblate states.
- SDPF-NR* is needed for prolate band (1 particle in *pf* shell)

Superdeformed structures appear at 18 – 20 MeV (SDPF-NR*)

Article: D. Frycz, J. Menéndez, A. Rios, B. Bally, T. R. Rodríguez and A. M. Romero, [arXiv:2404.14506 [nucl-th]]

THANK YOU!

< □ > < □ > < □ > < □ > < □ > < □ >

Outlook

Ab initio interaction:

 Valence space in-medium renormalization grop

Stroberg, S. Ragnar, et al. Ann. Rev. Nucl.

Part. Sci. 69, 307 (2019)

Shape coexistence and SD:

- N = Z: ³²S, ²⁴Mg...
- Neutron-rich: ³⁰⁻⁴²Si
- E0 transitions

Multipole deformations:

• $\beta_4(^{28}\text{Si}) = 0.03 \pm 0.01$

Y. K. Gupta et al., Phys. Lett. B 845, 138120 (2023)

Ground state (Mean field)

- Quadrupole-constrained HFB basis $|\phi(q)\rangle$: $\mathcal{H}'_{eff} = \mathcal{H}_{eff} - \lambda \sum_{\mu} Q_{2,\mu}$
- (β, γ) parameters:

• **TAURUS**_{vap} code B. Bally, et al. Eur. Phys. J. A **57**, 69 (2021)

 $Z_{v} = N_{v} = 6$ USDB interaction[†]

[†]W. A. Richter, et al. Phys. Rev. C 78, 064302 (2008)

Oblate minimum ($\beta \approx -0.4$)

A B A A B A

Ground state (Beyond mean field)

Mean field:

• Quadrupole-constrained HFB basis $|\phi(q)\rangle$: $\mathcal{H}'_{eff} = \mathcal{H}_{eff} - \lambda \sum_{\mu} Q_{2,\mu}$

Beyond mean field:

- Symmetry restoration $|\phi^{NZJ}\rangle = P^N P^Z P^J_{MK} |\phi\rangle$
- Configuration mixing of projected states (PGCM) $|\Psi_{\rm GCM}\rangle = \sum_q f_q |\phi^{NZJ}(q)\rangle$ GCM: generator coordinate method
- TAURUS_{pav,mix} codes
- B. Bally, et al. Eur. Phys. J. A 60, 62 (2024)

$$Z_{
m v}={\it N}_{
m v}=6$$
 USDB interaction †

[†]W. A. Richter, et al. Phys. Rev. C 78, 064302 (2008)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Modification of the interaction

Energy competition in quasi-SU(3): $\mathcal{H} = \mathcal{H}_0 - \kappa \beta^2$

- Gains energy with deformation but looses with excitations
- Prolate band: excitations from $d_{5/2} + s_{1/2}$ to $d_{3/2}$

Oblate and vibrational bands remain unperturbed (0p-0h)

D. Frycz, J. Menéndez, A. Rios, B. Bally, T. R. Rodríguez and A. M. Romero, [arXiv:2404.14506 [nucl-th]]

SU(3) model

.

- Quadrupole interactions: realistic Hamiltonians
- Restriction to a major shell (Fermi surface)

$$\frac{1 \text{ d} 3/2}{2 \text{ s}} \xrightarrow{\begin{array}{c} 1 \text{ d} 3/2 \\ (2) \\ (6) \end{array}}$$

• Energy competition: $\mathcal{H}=\mathcal{H}_0-\kappa Q_0^2$

- Correlation energy decreases as Q_0^2
- Single particle energy increases with promoted particles (from $d_{5/2}$ to $s_{1/2}$ or $d_{3/2}$)
- Intrinsic quadrupole moment Q₀:
 - Spherical: $Q_0 = 0$
 - **Prolate**: *Q*₀ > 0
 - **Oblate**: $Q_0 < 0$

Elliott, J. P. Proc R Soc Lon Ser-A, 1958. 245, 128.

Modification of the interaction

- The prolate 4p-4h is **lost** in configuration mixing
- $|4p4h
 angle = \sum_{i} c_{i} |\Psi
 angle_{i, \text{full sd}}
 ightarrow$
- USDB: prolate band only has 10% of |4p4h⟩

Modification of the interaction

- The prolate 4p-4h is lost in configuration mixing
- $|4p4h
 angle = \sum_i c_i |\Psi
 angle_{i, {
 m full sd}}
 ightarrow$
- USDB: prolate band only has 10% of |4p4h⟩

Too high single-particle energies

Gap between $d_{5/2}+s_{1/2}$ and $d_{3/2}$ 5 MeV ightarrow 3.6 MeV

• 4p-4h concentrated in 0⁺₃: now goes up to 20%

Objectives

- Why are some nuclei deformed?
 - Magic nuclei are spherical
 - Most nuclei are deformed
- What kind of deformation?
 - Quadrupole deformations
- Will they be prolate or oblate?
 - Axial symmetry
- Can different shapes coexist?
 - Spherical, prolate and oblate
- How much deformation?
 - Normal deformation (3:2 ratio)
 - Superdeformation (2:1 ratio)

Fixed np-nh configurations

Analytical SU(3) models:

- sd-shell deformations: $\beta \le 0.5$; $Q_0 \le 80 \text{ efm}^2$ too low for SD!
- sdpf space deformations: $\beta \ge 0.5$; $Q_0 \ge 80 \text{ efm}^2$ SD for $\ge 4p-4h$

Numerical calculations:

• Shell model *np-n*h: Similar to quasi-SU(3) sdpf

Lanczos strength functions

Decomposition of a fixed *np-nh* configuration into the fully mixed states of the Hamitonian: $|0_{np-nh}^+\rangle_{sdpf} = \frac{1}{N}\sum_{\sigma} S(\sigma)|0_{\sigma}^+\rangle_{sdpf}$ **Truncation**: maximum of 4 particles into *pf* shell (**dimensions**!)

• Energies: 2p-2h at 19 MeV and 4p-4h at 30 MeV!!!

Lanczos algorithm

- \bullet Initial state: $|1\rangle$
- Next step: $E_{12}|2
 angle = (H-E_{11})|1
 angle$
- Then: $E_{23}|3
 angle = (H E_{22})|2
 angle E_{12}|1
 angle$
- Generalizing: $E_{NN+1}|N+1\rangle = (H E_{NN})|N\rangle E_{N-1N}|N-1\rangle$ Where: $E_{NN} = \langle N|H|N\rangle$

$$\left(\begin{array}{ccc} E_{11} & E_{12} & 0 \\ E_{12} & E_{22} & E_{23} \\ 0 & E_{23} & E_{33} \end{array}\right),\,$$

• Finally, diagonalize and check convergence

(B)

э

Projected generator coordinate method (PGCM)

Variational approach:

- Configuration mixing of Hartree-Fock-Bogoliubov (HFB) states: $|\Psi_{GCM}\rangle = \sum_q f_q |\phi_{HFB}(q)\rangle$ B. Bally, et al. Eur. Phys. J. A 60, 62 (2024)
- Similar deformations for all interactions
- 2νββ matrix elements are larger for similar deformations T. R. Rodríguez and G. Martínez-Pinedo

Phys. Rev. C 85, 044310 (2012)

Figure: Contribution of each HFB wavefunction to fully mixed state for 82 Kr (0^+_2) with all interactions.