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Why the Lipkin/Extended Lipkin Model?

It is a solvable many-body model that allows to deal with
nuclear, molecular, solid state or quantum optics systems.
It can be “mapped” into the Interacting Boson Model of
Nuclear Physics.
Nowadays, it is used to benchmark many-body
approximations because of its great flexibility and simplicity
to be solved for large systems.
The model has a rich phase diagram.
It is a model highly used in Quantum Information Science
and, therefore, of great interest.
It is directly mapped into Pauli matrices without using the
Jordan-Wigner mapping.
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Why Quantum Computing in Nuclear Physics?

The U.S. Department of Energy in its document Energy Research Opportunity II
(2019) establishes “A broad theory program should be supported, which can,
e.g., develop methods to address problems in NP using digital quantum
computers and quantum simulators, utilize QIS concepts to better understand
nuclear phenomena (such as the nuclear many-body problem and
hadronization), and develop new QIS applications of importance to nuclear
physics”.

In the future, quantum computers will allow to outperform present computational
(classical) capabilities.

The applications of Quantum Computing in Nuclear Physics are increasing.

At present (Noisy Intermediate-Scale Quantum era) is a rather active area, but
still it is only dealing with small systems and schematic models: Variational
Quantum Eigensolver or Quantum Equation of Motion applied to the Lipkin
model, Shell-Model applications, implementation/restoration of symmetries.
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Why Quantum Computing in Nuclear Physics?

Variational Quantum Eigensolver or Quantum Equation of
Motion applied to the Lipkin model, Shell-Model
applications, implementation/restoration of symmetries.

“Cloud Quantum Computing of an Atomic Nucleus”, PRL
120, 210501 (2018).
“Symmetry-Assisted Preparation of Entangled Many-Body
States on a Quantum Computer”, PRL 125, 230502 (2020).
“Lipkin model on a quantum computer”, PRC 104, 024305
(2021).
“Simulating excited states of the Lipkin model on a quantum
computer”, PRC 106, 024319 (2022).
“Quantum computing of the 6Li nucleus via ordered unitary
coupled cluster”, PRC 106 (2022).
“Nuclear shell-model simulation in digital quantum
computers”, Sci. Rep. 13:12291 (2023).
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What a (digital) Quantum Computer is?

A device composed of:
m 2-level quantum systems (qubits),

a set of quantum gates (acting as unitary operators),

a set of measurement operators (measuring the state of defined subset of
qubits),

a classical control unit which determines which gate should be applied.

I. M. Georgescu, S. Ashhab, and Franco Nori, Rev. Mod. Phys. 86, 153 (2014).

Implementations
Trapped ions.

Superconducting circuits.

Nuclear spins (NMR).

Photons.

Neutral atoms.

Cavity arrays.
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Bits and qubits

Classical vs quantum
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Gates

Classical gates

From M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information
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Quantum gates

Single qubit gates

From M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information
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Quantum circuits

The simplest case

A step further

Results from Qiskit, https://www.ibm.com/quantum/qiskit
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The (Extended) Lipkin Model

The first appearance
H.J. Lipkin, N. Meshkov, and A.J. Glick, “Validity of many-body approximation methods

for a solvable model: (I). Exact solutions and perturbation theory”, Nucl. Phys. 62, 188

(1965).

The original Hamiltonian

It describes a set of N particles interacting with a long-range
interaction. S⃗ =

∑N
i=1 s⃗i and S = N/2.

HL = εSz − V
2
(S2

+ + S2
−)−

W
2
(S+S− + S−S+)

A convenient way of rewriting the Hamiltonian

HL = (1−λ)(S+Sz)−
λ

N
(S++S−)

2 = (1−λ)(S+Sz)−4
λ

N
S2

x
9



Motivation Quantum Computing The Extended Lipkin Model Phase diagram and Machine Learning use Conclusions

The ELM as an approximation of the Interacting Boson Model

The ELM Hamiltonian à la CQF

H = (1 − λ) nt −
λ

N
Q(α) · Q(α),

nt = t†t and Q(α) = (s†t + t†s) + α(t†t)

Equivalence with the Interacting Boson Model

S+ = t†s

S− = s†t ,

Sz =
1
2
(t†t − s†s).

HEL = HL −
λ

N

[
α2(S + Sz)

2

− 2α
(
Sx (S + Sz) + (S + Sz)Sx

)]
,
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What a Quantum Phase Transition (QPT) is?

A QPT appears when the
ground state a quantum
system experiences a sudden
change in its structure (order
parameter) when a parameter
that affects the Hamiltonian
(control parameter) slightly
changes around its critical
value. This transitions are
assumed to occurs at zero
temperature.

Ĥ = (1 − ξ)Ĥ1 + ξĤ2
0 0.5

Control parameter

0

0.5

1

1.5

O
rd

e
r 

p
a

ra
m

e
te

r
0

50

100

150

200

250

G
S

 e
n

e
rg

y
 (

a
rb

it
ra

ry
 u

n
it
s
)

1st order
Symmetric/Non-symmetric

0 0.5
Control parameter

2nd order 
Symmetric/Non-symmetric

11



Motivation Quantum Computing The Extended Lipkin Model Phase diagram and Machine Learning use Conclusions

Precursors of a quantum phase transition

Order parameter
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How to determine the shape/phase of the system?

The obvious things
Shape is not really an observable.

The shape of the system is a property of its ground state (it is true that it can be
also defined for a excited state).

It is well defined at the mean-field level.

A different view
The shape of the system characterizes its spectrum.

An observable depending on the spectrum could encode the shape of the
system. That, in general, will happen for the time evolution of the matrix element
of a non-eigenstate.

Most probably the results will depend of the state and on the used operator.
Difficult to determine a priori the best state and operator.

These types of measurements are the easiest ones in Quantum Computing.
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Our Ansatz

The shape of the system is encoded in the time evolution of an
appropriately chosen operator.

The correlation operator

Cν(i , j , t) = ⟨Φ0|U(t)†σi
νσ

j
νU(t)|Φ0⟩

− ⟨Φ0|U(t)†σi
νU(t)|Φ0⟩⟨Φ0|U(t)†σj

νU(t)|Φ0⟩,

σi
ν is a Pauli matrix, |Φ0⟩ is an arbitrary state, not an

eigenstate. Also can be used Sz ,

Sz(t) = ⟨Φ0|U(t)†SzU(t)|Φ0⟩,
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Time evolution as a tool determine the phase diagram of a system

The evolution operator

U(t) = exp(−i H t)

In practice, it is implemented through the Lie-Trotter-Suzuki decomposition (Trotter in
short)

U(t) ≈
(∏

k

e−iHk t/nT

)nT

= UT (t , nT ),

where the error produced will depend on the commutator [Hi ,Hj ] and scale as 1/nT ,

where nT denotes the number of Trotter steps.

The Hamiltonian terms

H1 = gzSz + gzzS2
z ,

H2 = gx Sx + gxx S2
x ,

H3 = gxz(Sx + Sz)
2.
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The implementation of the time evolution

Quantum circuit
Sz Sx S2

x S2
z (S2

x + S2
z )

q1 Rz Rx

MS
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y (π/2)

MS
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.
.

.

.
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.
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.
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.

.

.

.
qn Rz Rx R†

y (π/2) Ry (π/2) R†
y (π/4) Ry (π/4)

Fidelities of up to 99.9999% for single-qubit gates and up to
99.9% for MS gates.

f =
[
(fs)6N(fMS)

3
]nT

.

The depth of the circuit depends on nT .
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The fidelity

F = |⟨ϕ(0)|UT (t ,nT )U(t)|ϕ(0)⟩|2.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
t

0.90

0.92

0.94

0.96

0.98

1.00

F

−nT = 1

−nT = 4

−nT = 20

λ= 0.2 , α= 1/
√

2

nT = 1

nT = 4

nT = 20

0 2 4 6 8 10 12 14 16 18 20
nT

0.90

0.92

0.94

0.96

0.98

1.00

F

λ= 0.2 , α= 1/
√

2

t= 0.2

t= 1.0

t= 4.0

Fidelity of the trotterized evolution. N = 6, initial state |Φ0⟩ = | ↑↓↑↓↑↓ ⟩.

17



Motivation Quantum Computing The Extended Lipkin Model Phase diagram and Machine Learning use Conclusions

Really useful information from time evolution?

Time evolution of the correlation operator
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Machine learning to recognize the shape of the system

Machine learning in a classical computer
Regression
Clustering
Decision Trees
Reinforced Learning
Genetic Algorithms
Neural Networks

The options
To use supervised learning.
To use supervised learning with partial information.
To use unsupervised learning.
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Results from a Convolutional Neural Network
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Results from a CNN with partial information
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The unsupervised case

C-means
Objective function to be
minimized

f (C⃗) =
n∑
i

k∑
j

wi,j(||x⃗i − c⃗j ||)2

where

wi,j =
1∑k

j ′

(
||⃗xi−c⃗j ||
||⃗xi−c⃗j′ ||

) 2
m−1

,

In K-means wi,j ∈ {0,1}.
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Cluster 1 membership for the phase diagram of the ELM
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Conclusions and outlook

It has been presented the implementation of the Extended Likpin model in a
quantum simulator.

The phase diagram of the model has been determined calculating the time
evolution and using a Convolutional Neural Network.

The time evolution method does not need the knowledge of the ground state.

Supervised and unsupervised flavours have been presented.

Further reading
P. Pérez-Fernández, J.M. Arias, JEGR, and L. Lamata, “A digital quantum simulation of the Agassi model”,
Phys. Lett. B 829, 137133 (2022).

A. Sáiz, JEGR, J.M. Arias, L. Lamata, and P. Pérez-Fernández, “Quantum Simulations of an Extended
Agassi Model in Trapped Ions using Machine Learning”, Phys. Rev. C 106, 064322 (2022).

S. Baid, A. Sáiz, L. Lamata, P. Pérez-Fernández, A. Rios, A.M. Romero, J.M. Arias, and JEGR,“Extended
Lipkin model: Proposal for implementation in a quantum platform and machine learning analysis of its
phase diagram”, Phys. Rev. C 110, 044318 (2024).
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Thank you for your attention
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