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1. Quantum many-body derivation of “rotational energy”

2. Triaxiality and rotational states

3. Vibrational excitations and triaxiality

Rotational states of a microscopic object are relevant to Quantum Computing
à Proper description/understanding needed

conceptual but practical also

Outline



classical mechanics

time t0, angle W0

time t, angle W(t)
rotation of rigid body

- superposition of states 
at varying angles 

- for axially symmetric shape,
J(J+1) rule is suggested

- just kinetic energy of free
rotation, no interaction

quantization of free rotation of this rigid body 
à eigenstate with angular momentum  h J

conventional description
Origin of the J(J+1) rule of rotational excitation energy

Bohr Hamiltonian

Thus, for axially symmetric shapes, the 
rotational kinetic energy is given by

Ring & Schuck, 
The Nuclear Many-Body Problem 

T rot J ( J+1 )



……

Nobel Prize 1975

ideal rotor:
Ex     J(J+1) 
rule

J=0

J=2

J=4

ratio=1 : 3.33

rotation



classical mechanics

time t0, angle W0

time t, angle W(t)
rotation of rigid body

- superposition of states 
at varying angles 

- for axially symmetric shape,
J(J+1) rule is suggested

- just kinetic energy, no 
interaction

quantization of free rotation of this rigid body 
à eigenstate with angular momentum  h J

quantum mechanics for many-body system
conventional description view to be discussed

eigenstate with angular momentum  h J

- superposition of states at varying angles 

- Hamiltonian H, including
interactions, couples
states created by 
orienting the same 
intrinsic state at  different 
angles

- lower K and J provide more binding energies 

- this feature is general and robust 

- features are due to
specific angle dependence 
of mixing patterns, which 
is governed by J

H

Origin of the famous J(J+1)-K2 rule of rotational excitation energy

We discuss this view and its consequences
in next pages !



Quantum many-body description (derivation) of rotational excitation energy

y axis

y axis

: intrinsic state (i.e., state in the body-fixed frame) with K=0

à energy of the state projected onto J

y axis

H
b

symmetry restoration with angular momentum J 

energy kernel

+ …

(see next page)

state projected onto J 

rotation about y axis

K=0 is assumed
for the time being 



Legendre function satisfies the differential equation:

(M
eV

)

regions of cos b ~ 1 or -1
are relevant

similar expansion for b ~ -1

hierarchy expansion in terms of 

+ …

a new feature in this analytic aspect

norm and energy kernels

= FJ



norm kernel

energy for J is given by 

{ + …}

Leading order (LO) & Next to LO (NLO) :

We substitute the first two terms, also for those for the normalization, 

+

norms are treated similarly

for

substituting

deviation ~ 1.5 % to direct projection in the tests so far



generalization: LO + NLO for a finite K, by utilizing the hypergeometric function,

LO + NLO + N2LO term,

coefficients are calculated 
with intrinsic states of 
assigned K values, differing
from those for K=0 in general

K mixing matrix elements can be obtained (not done yet, more complex).

deviation ~ 1.5 % vanishes



classical mechanics

time t0, angle W0

time t, angle W(t)
rotation of rigid body

- superposition of states 
at varying angles 

- for axially symmetric shape,
J(J+1) rule is suggested

- just kinetic energy, no 
interaction

quantization of free rotation of this rigid body 
à eigenstate with angular momentum  h J

quantum mechanics for many-body system
conventional description present view

eigenstate with angular momentum  h J

- superposition of states at varying angles 
- Hamiltonian H, including
interactions, couples
states at different angles

- resultant excitation energy 
depicts the J(J+1) – K2 rule
for strong deformation

- lower K and J provide more binding energies 

- this feature is general and robust 

- this rule arises from
specific angle dependence 
of mixing patterns, which 
is governed by J

H

Origin of the famous J(J+1)-K2 rule of rotational excitation energy



This simple fact has been missing for seven decades.

This formulation may open a gate for the Nambu-Goldstone Mode; its
extension to geometrical symmetry like rotational one has been difficult.

The Hamiltonian H stands for a nucleon Hamiltonian which comprises 
SPEs, NN interactions, 3N interactions, etc.

The equations are general and independent of details.  They are valid
for ab initio calculations (such as 12C (R=2.99)) as well as for DFT approaches.

What we need is just a strong deformation, including cluster states.  

These results are obtained within the quantum many-body framework,  
without resorting to the quantization of the free rotation of classical object.  

The rotational excitation energy represents a loss of the binding energy 
provided by this Hamiltonian for each J state, compared to J=0+ energy.  



1. Quantum many-body derivation of “rotational energy”

2. Triaxiality and rotational states

3. Vibrational excitations and triaxiality

Rotational states of a microscopic object are relevant to Quantum Computing
à Proper description/understanding needed

conceptual but practical also
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Types of ellipsoidal shapes of nuclei and comparison to molecules

quadrupole moments of the intrinsic state
(nuclear state in the body-fixed frame)

z

deformation parameters

prolate shape

triaxial shape

= 0

= 0

The prolate shape has been believed to be dominant over the triaxial shape. 

(oblate shape             )



Aage Bohr
Novel Prize Lecture
(1975)

g – vibration 

Axially symmetric 
prolate ellipsoid
(equilibrium)

phonon
excitation

A case of the textbook example:

原子核 by M. Nogami

Aage N. Bohr, 1922-2009
Nobel Foundation archive

166Er

also emphasized in
A. Bohr and B. R. Mottelson,
Nuclear Structure II
(1975, Benjamin, New York)



0g9/2

1d5/2
2s1/2
0g7/2
1d3/2
0h11/2
1f7/2
2p3/2

1f7/2
2p3/2

1f5/2
2p1/2

0h11/2

0h9/2
0i13/2

1g9/2
2d5/2
3s1/2

proton neutron

110Zr

Nucleons are excited fully within 
this model space   (no truncation)

We performed Monte Carlo Shell Model 
(MCSM) calculations, where the largest case 
corresponds to the diagonalization of 3.9 x 10 31

dimension matrix.
Its recent extension, Quasiparticle Vacua Shell 
Model (QVSM)* is used, in order to incorporate
pairing and deformation effects on an equal 
footing.  
*Shimizu et al, PRC 103, 014312 (2021)

Effective interaction: G-matrix* + VMU

* Brown, PRL 85, 5300 (2000)

Revisit with Monte Carlo Shell Model

40

70

VMU  : same interaction for the description of shell evolution in exotic nuclei

+ HFB (number VAP, J VBP) + GCM for g



Result of MCSM calculation (QVSM)Aage Bohr’s 
picture

Our picture

E2 quantities in W.u.

R

K

J = R + K

K =0

K =2

circle
ellipse

(cannot rotate) The MCSM result points to a triaxial shape with axis ratio, 1.00 : 1.06 : 
1.35, through its T-plot analysis (see next pages).
No hint of vibrational excitation.

K = 0

K = 2

In the present case, the mixing between K=0 
and K=2 states is small, and can be neglected. 



Shape variables and their visualization for the ground and lowest states of 166Er
T-plot: Distribution of basis vectors

prolate

triaxial triaxial with 
<g> = 8.4 deg

triaxial with
<g> = 9.1 deg

<g> = 9.5 degcut

Similar result from Kumar invariant
<g> ~ 9.2 deg, <b2> ~ 0.30

oblate

K = 0

K = 2

K = 4



Two major origins of triaxiality 

1. Restoration of broken rotational symmetry in the intrinsic state  

2. Specific components of NN interaction 
… effects seen in unprojected PES 

independently of the symmetry restoration



opposite

non-zero triaxial deformation 
à more binding energyK=2

less binding energy than K=0 

This symmetry is restored by the 
projection onto a good K value

Broken rotational symmetry in the xy
plane as represented by the ellipse. 

(different representations of the 2-dim. rotational group) 

K=0



Along the cut (b = 0.3) in the PES HFB with good particle number
for the same Hamiltonian

lowering of K=0+ projected state

the triaxiality gives 
more binding energy to K=0+

triaxiality is not 
a fluctuation but a mean effect

Unprojected and projected energies relative to g=0 value as a function of g

A non-trivial feature:
The flat bottom of the unprojected
PES is one of the crucial factors for 
yielding the distinct triaxial minimum
after the projections onto K=0+ (or 2+).QVSM

QVSM 1st
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b. decomposition into monopole and 
    multipole components
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tensor. multi.

e
n

e
rg

y
 (

M
e

V
)

a. changes from values for γ=0 (deg.) 

pn central

pn tensor

rest

total

166Er

decomposition into individual effects of
pn central, pn tensor and rest components

tensor monopole int. 
&
central high-rank multipole (hexadecupole) int.

Further decomposition into monopole and multipole
components à major players identified

An anatomy of the energy of unprojected
state relative to g=0 value as a function of g

total unprojrcted

quadrupole int. gives more binding energy to more 
deformed states, but is neutral for triaxiality,
because                     ~       ~



Two origins and two appearances of triaxiality in deformed heavy nuclei

1. Basic (modest) triaxiality due to symmetry restoration with K

2. Prominent triaxiality mainly due to 
monopole part of pn tensor force

and/or
hexadecupole (multipole) part of pn central force 

If only this works, deformation parameter g is typically up to 5 degrees.
This occurs in most (perhaps all) deformed nuclei.

Deformation parameter g ranges from 6 to 14 degrees (or more). 
This occurs in selected heavy deformed nuclei (~half ?).

Both cases involve high-j orbitals, like g9/2,7/2 , h11/2,9/2 , i13/2,11/2 , etc.



g = 3.7 deg (154Sm) 

Systematic behaviors
by MCSM (QVSM) 

B(E2; 0+
1 -> 2+

gamma )

Levels, B(E2)’s and 
Q-moments

supported by a recent GDR (Kleemann et al., 2024)
experiment (g = 5.0 +- 1.4 deg)

B(E2) from 2+ at Ex~2.7 MeV of 154Sm

g ~ Multiple CoulEx value 

166Er

158Gd

164Dy



Appearance of prominent triaxial shapes

prominent 
triaxiality

~ basic triaxiality at most
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Vibrational excitations
They can be searched by solving 
the eigenvalue problem with an 
increased number of basis vectors,
yielding more eigenstates.

An advanced T-plot for mixing amplitudes

Usual T plot for the probability.

red (blue) circles :  amplitudes are positive (negative) 
amplitudes are defined to be positive for 0+

1 or 2+
2  state 

vibrational built on
triaxial

g g

0+
1 0+

3 2+
52+

2
K=2 vibK=0 K=0 vib K=2

schematic illustration 

am
pl

itu
de

triaxial



Level energies of 166Er
including vibrational states

gg K=4 
g vibrational
K=0 

g vibrational
K=2 

0+2

xy plane cross section
of triaxial states 

-

xy plane cross section of 
g vibrational states built on
triaxial states

à both K=0 and K=2 arise 

K=2 ex. energy is higher by 
the same reason as that for 
the 2+g band

g band

ground band

more deformed
band (less triaxial,
not b vibrational)
pg7/2 -> d3/2

166Er calc.
(basis vectors
in and around the
PES  minimum as 
seen in T-plot)

decay path



Summary

2. Triaxial deformation occurs in virtually all deformed nuclei, because the symmetry 
restoration gives more binding energy than axially symmetric shapes. à “basic triaxiality”

3. Stronger triaxiality occurs, already for unprojected states, due to tensor (monopole) and/or 
central (hexadecupole) forces in some nuclei, at least in 13 rare-earth nuclei, such as 166Er, 
164Dy, 158Gd. à “prominent triaxiality”

4. Vibrational excitations from triaxial shapes are identified at Ex=2.5-4 MeV with K=0 and 
K=2.  gg K=4 and more deformed K=0 are seen, probably in agreement with experiment.

arXiv:2303.11299v6 [nucl-th]

1. Rotational excitation energy proportional to J(J+1) – K2 is derived in quantum many-body 
framework, without resorting to the quantization of the free rotation of classical rigid body.  

5. Nilsson and Davydov models are extended/assessed, but not discussed due to time. 

Reference:



Expecting a lot to come

E N D
Thank you for your attention



Appearance of (ground-state) rotational bands in nuclei

our focus (A=150-190)



steep change ~ 7 MeV
(cf. ~4 MeV for 166Er)

There is a tendency 
towards a more 
prolate shape in 
154Sm

Energy of unprojected state relative 
to g=0 value as a function of g

154Sm : typical example of basic triaxiality only 

no flat bottom in the unprojected PES
modest minimum in K / J projected PESs
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Two major origins of triaxiality 

1. Restoration of broken rotational symmetry in the intrinsic state  

2. Specific components of NN interaction 
… effects seen in unprojected energy as flat bottom or basin 

before the symmetry restoration



Involvement of large-j orbitals are crucial for triaxiality 

Hexadecupole central interaction does not work without them

tensor monopole + central monopole push them down ! 

Hexadecupole interaction favors more complicated shapes à triaxiality
Quadrupole interaction does not favor triaxiality, being neutral for unprojected PES 



HFB PES decompositions
158Gd (Z=64, N=94)

164Dy (Z=66, N=99)

164Yb (Z=70, N=94)

largely by tensor monopole,
the rest gives minor contribution,
g = 5.9 deg.

mainly by hexadecupole int.,
also by tensor int., 
g = 7.3 deg., 
most profound minimum

also by hexadecupole int.,
tensor neutral (flat),
g = 8.7 deg.,
very flat

158Gd 164Dy 164Yb



K & J projections of the first (n=1) MCSM basis vectors n =1 of 

lowering of 2+
g level : 

partly because of  
“opposite mechanism”
weakened by a larger
g value
(stretching in a quantal 

way)
next page

too high

Evolution (stretching) of deformation parameter g  from ground to g & g g  bands



opposite

non-zero triaxial deformation 
à more binding energyK=2

less binding energy than K=0 

This symmetry is restored by the 
projection onto a good K value

Broken rotational symmetry in the xy
plane as represented by the ellipse. 

(different representations of the 2-dim. rotational group) 

K=0



Decomposition into 
pn central, pn tensor and rest components

… all repulsive up to g ~20 deg

No central high-rank multipole (hexadecupole) int.
&

Opposite tensor monopole int. 

Further decomposition into monopole and multipole
components à major players

quadrupole int. dominates pn central multipole effects

A very different situation from the nuclei discussed so far
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shape coexistence
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Systematics of deformation parameter g

Is g=2 degrees the minimum in this region of the Segre chart ?



Nilsson model 
good feature of the Nilsson model is preserved by considering 

odd particle  x   K=0+ projected even-even core

This is an extended version of the Nilsson (+BCS) model 
à eNilsson (applicable also for prominent triaxial nuclei) 

(incl. antisymmetrization)

The quantum numbers of the Nilsson model can be used, even if the shape
is prominent triaxial.  à Merit of a faster and easier understanding !



Davydov model 
The energies given by Davydov model may not be good enough because of the
assumed rigid triaxiality.  A stretching increases g from g to g and gg bands.

from Davydov & Filippov, Nucl. Phys. 8 (1958)

The g value from E2 transitions appears to be more precise.
It seems that the claimed triaxiality in strongly deformed nuclei could be 
appreciated more.

If g = 9 degrees, 3g =27 degrees, and  
à ½ [1 + 0.9510] = 0.9755

à ½ [1 - 0.9510] = 0.0245

experimentally this ratio is 1 : 0.024(1)

Davydov et al.
addressed

the ratio is 1 : 0.0251



K & J Projections of the first (n=1) basis vectors
of MCSM (QVSM) for g and g bands

n =1 of 

double g-phonon (gg) 
state
(long-term mystery)

partly because of  
opposite mechanism
weakened by larger
g value
(stretching in a
quantal way)

This is what is 
expected from the 
rigid-triaxial rotor 
model, including 
the Davydov model.
Ex K2.

Remark on double g-phonon (gg) state



K & J Projections of the first (n=1) basis vectors
of MCSM (QVSM) for g and g bands

n =1 of 

so-called
double g-phonon (gg) 
state
(long-term mystery)
naturally appears as
K=4 member

partly because of  
the stretching with 
a larger g value
in a quantal way

Remark on double g-phonon (gg) state (continued)



Summary

2. Triaxial deformation occurs in virtually all deformed nuclei, because it gives more binding
energy than axially symmetric shapes. à “basic triaxiality”    It is not a fluctuation.
The ground band of 154Sm is an example, while side bands show shape coexistence with g.

3. Stronger triaxiality occurs due to tensor (monopole) and/or central (hexadecupole) forces in
some nuclei, at least in 13 rare-earth nuclei, such as 166Er, 164Dy, 158Gd. 
à “prominent triaxiality”

4. Nilsson model may be extended even to nuclei with triaxial shapes. (à eNilsson model)

arXiv:2303.11299v6 [nucl-th]

1. Rotational excitation energy proportional to J(J+1) – K2 is derived in quantum many-body 
framework, without resorting to the quantization of the free rotation of classical rigid body.  

5. The prevailing triaxiality in strongly deformed nuclei proposed by Davydov may receive
more appreciation, putting aside his model’s rather poor predictive power for energies.  

Reference:



Experimental test of triaxiality

Direct measurement of the shape is most desirable 
Relativistic Heavy-Ion Collision 

Multiple Coulomb excitation (initiated by Doug Cline)

can also cover down to basic triaxiality.

already (1990’s) provided with consistent nice data with 
not-so-natural interpretation   (preconceptions cloud your eyes)

also for 166Er by Fahlander et al. (1992), for 164Dyand 158Gd, by Werner, et al (2005).

Other plausible possibilities …  even up to EIC
various (e,e’) like GDR or M1 excitations 

and more 

renewed possibilities with AGATA and GRETA (Dg = 1 deg. will be great)



Types of ellipsoidal shapes of nuclei and comparison to molecules

quadrupole moments of the intrinsic state
(nuclear state in the body-fixed frame)

z

deformation parameters

prolate shape

triaxial shape

= 0

= 0

Deformed (=non-spherical) objects rotate in classical and quantum senses. 

(oblate shape             )



Axial symmetry
supposed to
dominate
the region of
current interest

a la Aage Bohr

Conventional v
iew

166Er



Questions were raised from some viewpoints, but it remained unsettled.

Sharpey-Schafer et al. (2019) on g-phonon

Data from Multiple CoulEx experiments showed finite g values, but no explicit strong 
claim of triaxiality was made.

Cline et al (1986,1990), Fahlander et al (1992), Werner et al (2005), … 

on b-phonon or b vibration

empirical approach
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Gogny -> 5DCH
(Bohr-Hamiltonian)

Correlations between theoretical & 
experimental values (scale: logarithmic)2+
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Delaroche et al.,
PR C 81, 014303 (2010)

Furthermore, there have been microscopic approaches also, 
where the description of excited bands are still a challenge.
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Minimize E(D) with respect to D utilizing 
Quantum MC and variational methods

Step 1 : Shift randomly matrix matrix D.   (The initial guess can be taken from Hartree-Fock.)
Select the one producing the lowest E(D) (rate < 0.1 %) 

Step 2 :   Polish D by means of the conjugate gradient (CG) method variationally.  

Basic formulation of Monte Carlo Shell Model

NB : number of basis vectors 

Projection op.

n-th basis vector  (Slater determinant)amplitude -÷
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Nsp : number of single-particle states

Np : number of (active) particles

Superposition of original single-particle state

a

eigenstate

Bogoliubov state in the QVSM (advanced version)



Identification of nuclear shape by T-plot of MCSM

MCSM basis vectorMCSM eigen wave function

Slater determinant or
Bogoliubov states (BCS with deformation)

angular-momentum, 
parity projection

T-plot of 0+ states of 78Ni (Z=28, N=50)

spherical

oblate

prolate

0+
2

0+
1

• Location of circle:  shape
quadrupole deformation of 
unprojected MCSM basis vector

• Area of circle: importance 

overlap probability between each projected 

basis vector and the eigen wave function

• Potential energy surface (PES) is calculated by 
Constrained HF for the same interaction

Y. Tsunoda, et al.
PRC 89, 031301 (R) (2014)  



A remark about fluctuations or variances
after orthogonalization  (preliminary)

b2

166Er 0+ 
1

2+ 
2

4+ 
3

ground state

g band head

g g band head

mean 
value

standard
deviation

g (deg.)

mean 
value

standard
deviation

0.292

0.294

0.294

0.006

0.005

0.005

8.2

9.1

9.5

2.3

1.7

1.5

154Sm 0+ 
1

0+ 
2

2+ 
4

ground state

b band head

gg band head

0.275

0.240

0.278

0.011

0.010

0.009

3.7

12.6

5.9

2.9

3.8

2.6



valence nucleons are sparsely configured 
because of the shell structure 

range of nuclear forces
<<

size of single-particle orbital
(the bigger the heavier)





64Ge in pfg9-shell, 1014dim

Number of basis vectors
(deformed Slater determinants)

By including more basis vectors, we can get closer to exact solutions.

The MCSM calculation is carried out by
successive search of basis vectors:

The n=1 basis vector is fixed first by
stochastic and variational searches for
the most optimal  D(n=1) matrix.
The initial guess for this search can be a 
mean-field solution, and we go beyond. 
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The n=2 basis vector is fixed next, under
the presence of the n=1 basis vector.

The n=3, 4, … basis vectors are fixed likewise,
driving the result closer to the exact solution.



Physics 2022, 4, 258–285. 
https://doi.org/10.3390/physics4010018

Shell evolution due to the monopole interaction
Type II shell evolution and shape coexistence

New neutron dripline mechanism due to the monopole-quadrupole 
interplay, exemplified for F, Ne, Na and Mg isotopes

besides the traditional mechanism with single-particle nature

Triaxiality dominance in heavy nuclei as a consequence of the
self-organization due to the monopole-quadrupole interplay   ç a bit more progress
ßà traditional prolate dominance picture

Special Issue "The Nuclear Shell Model 70 Years after Its Advent: Achievements and Prospects"
edited by A. Gargano, G. De Gregorio and S. M. Lenzi

Alpha-clustering is not included



two most attractive
monopole interactions
h11/2-h9/2 and g7/2-i13/2
are weakened to
average value 

monopole interactions
are replaced by constant 
SPEs assessed
for spherical reference 
state (Monopole-Frozen)

minimum is 0.4 MeV 
below prolate energy

minimum is 0.1 MeV 
below prolate

minimum is 0.1 MeV 
below prolate

PES near the minimum: refined contour plots

Original Hamiltonian

T plot of 0+1 state


