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Outline

1. Quantum many-body derivation of "rotational energy”

conceptual but practical also

2. Triaxiality and rotational states

3. Vibrational excitations and triaxiality

Rotational states of a microscopic object are relevant to Quantum Computing
- Proper description/understanding needed



Origin of the J(J+1) rule of rotational excitation energy

conventional description Ring & Schuck,

classical mechanics The Nuclear Many-Body Problem

time t, angle Q(t) : :
L\ rotation of rigid body Bohr Hamiltonian

Ho 282{3 (8 )

time t,, angle Q,

l + fml+ V{8, Y).

quantization of free rotation of this rigid body
-> eigenstate with angular momentum 1 J

the rotational energy 1s found to be
Y /. 1‘2 1,

- superposition of states T = .
at varying angles ™24, 24 29,
- for axially symmetric shape, Thus, for axially symmetric shapes, the

J(J+1) rule is suggested «—— rotational kinetic energy is given by

- just kinetic energy of free T ot OC J(J+1)

rotation, no interaction




Nobel Prize 1975 These relatively vague ideas were further developed by Bohr|in a famous work from 1951, in
which he gives a comprehensive study of the coupling of oscillations of the nuclear surface to

Awa rd ceremony speec h the motion of the individual nucleons. By analysing the theoretical formula for|the kinetic

[energy of the nucleus,|he could predict the different types of collective excitations: vibration,
Presentaion Specch by professor Sven Johansson of the Royal Academy of Scences~ consisting of a periodic change of the shape of the nucleus around a certain mean value, and
Translation from the Swedish text rotation of the whole nucleus around an axis perpendicular to the symmetry axis.|In the latter
case, the nucleus does not rotate as a rigid body, but the motion consists of a surface wave
propagating around the nucleus.

Your Majesties, Your Royal Highnesses, Ladies and Gentleme

Up to this point, the progress made had been purely theoretical and the new ideas to a great
extent lacked experimental support. The[very important comparison with experimental data |
was done in three papers, written jointly by Aage Bohr and Ben Mottelson and published in
the years 1952-53. The most spectacular finding was the discovery that the position of energy
levels in certain nuclei could be|explained by the assumption that they form a rotational
spectrum/| The agreement between theory and experiment was so complete that there could
be|no doubt of the correctness pf the theory. This gave stimulus to new theoretical studies,
but, above all, To many experiments to verify the theoretical predictions.

rotation

—a 1 e

Drs Bohr, Mottelson and Rainwater,

ratio=1 : 3.33 ideal rotor:

Ex oc J( J_|_1) In your pioneering works you have laid the foundation of a theory of the collective properties
]=2 of atomic nuclei. This has been an inspiration to an intensive research activity in nuclear
structure physics. The further development in this field has in a striking way confirmed the

validity and great importance of your fundamental investigations.

v rule

J=0




Origin of the famous J(J+1)-K? rule of rotational excitation energy

conventional description
classical mechanics

time t, angle Q(t)
\\ rotation of rigid body

time t,, angle Q,

<

quantization of free rotation of this rigid body
-> eigenstate with angular momentum 1 J

- superposition of states
at varying angles

- for axially symmetric shape,

J(J+1) rule is suggested

- just kinetic energy, no
interaction

view to be discussed
quantum mechanics for many-body system

eigenstate with angular momentum # J

- superposition of states at varying angles

H - Hamiltonian H, including
T interactions, couples
states created by
orienting the same
intrinsic state at different
angles

- features are due to
specific angle dependence
of mixing patterns, which
is governed by J

We discuss this view and its consequences
in next pages |



Quantum many-body description (derivation) of rotational excitation energy

®0 : intrinsic state (i.e., state in the body-fixed frame) with K=0

a. nucleus (prolate)
/ symmetry restoration with angular momentum J

R

sl viow | :% y axi state projected onto J f dBsinBd; ,(B)| | )
W ! |

rotation about y axis

top view : 5
- energy of the state projected onto J B | 4o )
b. nucleus (triaxial) :
| -/ g YL Iand,Bsin:B & B [0 o
| C'_R y axis TN BT 0 00 o7 p
| Bl 2J + 1 "
\ 4 4 = dp sin|d’ hy(B)\
et L 2IN, 2 fo psinfldoo B 1)
K . 7
energy kernel hy(B) =|(do| H [¢"* | $o) ® vy axis
K=0 is assumed - | ;
for the time being dyo(B)|=Ps(cosB) ~ 1 + Fy(cosp — 1) + Gy(cosp — 1)* + ...

(see next page)



dyo(B)|= Ps(cosp) ~ 1 +|Fi(cosp — 1) + G;(cosp — 1)* +

hierarchy expansion in terms of (cosf— 1) | g new feature in this analytic aspect

Legendre function saTisfies the differential equation:
5
(1-cos?B) P,(co )}+J(J+1)P (cosB) = 0
d(cosp) P sB) s(cosf s(cosp
d _JUu+h G _L{JJ D) =27 +1 }
) dc s,B)PJ(COS'B)‘ 7 =F, TS (( + )) J+1)
— T T T T T T T ] L
norm and energy kernels -~ (@) nom kemel : I [}
1_,’ \\ - ~ B ‘\
. \ _ i8J, > :
regions of cos f~ 1 or -1 1B = (ol e o[} = ]
are relevant 1 = o0l | B = (dolHE g0
| ;I X_ b
.. . v - i (b) energy kemel (MeV)
similar expansion for g~ -1 o'} ) < Rl i
C L T B B -400- “\\/" KF=0* projected energy
_1 0 1 | | | | | | | | |

cos B ) " cosB



energy for J is given by

2+ 1 (T o _2J+lf” . ,
EJ = 2N, j; dpsingd (B) hy(B) = INE o dp sinf3 { +| Fjl(cosB — 1) + Gy (cosB — 1) + ...} h.y(ﬁ)

,,,,,,,,,,,,,, eo = f d(cosp) hy(B), ey = f d(cosp) hy(B) (cosp — 1)

norms are treated similarly

lNle: 2h f dp sinf3 dcj)o(ﬂ) (¢ | ®* 5 " o) norm kernel ny(B) = <¢O|eiﬂj’ | do)

2
ny = f d(cosp) ny() n = f d(cosp) ny(B) (cosp — 1)

We substitute the first two terms, also for those for the normalization,

e e n
E, ~ O FEser _0{1 L8 F,_‘} for el < leol and |ny] << ol
ng + |Fjn 1 € no

Leading order (LO) & Next to LO (NLQO) : substituting F; = J(J +1)/2

|
E;= 0 4 —J(J+1)e—0{e—1 _ "—‘}
no 2 no \ eg g

deviation ~ 1.5 % to direct projection in the tests so far




LO + NLO + N2LO term,

eo + Fjer + Gjyer

1
EJ: GJ:—

{(J(J 1)) =27+ 1) }

no + Fyni + Gynp 16
2) L (1) n_l )} { € _ no }
E7(J)=-F1E°(U) 1o + Gy no leg  no deviation ~ 1.5 % vanishes

generalization: LO + NLO for a finite K, by utilizing the hypergeometric function,

N ] L _ coefficients are calculated
o+ _ ¢ 1 2| €0 fer o m with intrinsic states of
EJ,K - o M b {J(‘] +D-K } o {z?o i assigned K values, differing
from those for K=0 in general

K mixing matrix elements can be obtained (not done yet, more complex).



Origin of the famous J(J+1)-K? rule of rotational excitation energy

conventional description present view

classical mechanics quantum mechanics for many-body system
time t, angle Q(t) _
\\ rotation of rigid body eigenstate with angular momentum # J

- superposition of states at varying angles

time 1, angle € - Hamiltonian H, including

‘\H, interactions, couples
l states at different angles
- _ - / - resultant excitation energy
quantization of free rotation of this rigid body depicts the J(J+1) — K2 rule
- eigenstate with angular momentum 7 J for strong deformation
- superp.osition of states - this rule arises from
at varying angles specific angle dependence

of mixing patterns, which

- for axially symmetric shape, _
Is governed by J

J(J+1) rule is suggested

_ L - lower K and J provide more binding energies
- just kinetic energy, no

interaction - this feature is general and robust




These results are obtained within the quantum many-body framework,
without resorting to the quantization of the free rotation of classical object.

The Hamiltonian H stands for a nucleon Hamiltonian which comprises
SPEs, NN interactions, 3N interactions, efc.

The rotational excitation energy represents a loss of the binding energy
provided by this Hamiltonian for each J state, compared to J=0* energy.

The equations are general and independent of details. They are valid
for ab initio calculations (such as 2C (R=2.99)) as well as for DFT approaches.

What we need is just a strong deformation, including cluster states.

This simple fact has been missing for seven decades.

This formulation may open a gate for the Nambu-Goldstone Mode; its
extension to geometrical symmetry like rotational one has been difficult.



Outline

1. Quantum many-body derivation of "rotational energy”

conceptual but practical also

{2. Triaxiality and rotational states 1

3. Vibrational excitations and triaxiality

Rotational states of a microscopic object are relevant to Quantum Computing
- Proper description/understanding needed



Types of ellipsoidal shapes of nuclei and comparison to molecules

quadrupole moments of the intrinsic state
a. Oy molecule b. Hy0 molecule (nuclear state in the body-fixed frame)

Qo = 277 —x* —y%)

1>
3% —){j— > Q= V3/2( -y
deformation parameters

B5 o< (05 + 203)

C. nucleus (prolate) d. nucleus (triaxial) Z

R R
side view %

top view '

tany = ‘/5 %

prolate shape y=0° | Q2 = O

@ triaxial shape y%50° |92 X0

-
K

(oblate shape y=60°)

The prolate shape has been believed to be dominant over the triaxial shape.



Aage Bohr

Novel Prize Lecture o
(1975)
% 1000

(

Aage N. Bohr, 1922-2009

Nobel Foundation archive 0

Fig. 9. Rotational bands in “Er. The figure is from (35) and is based on the experimental

155571

1376 00

121563

1075 26

956.21

e""

A

+

166

911.2

v - vibration

C =10 mev
A =00Bev

phonon
excitation

A= 13507 kev
B =-13.4eV
Cx~ 30 meV
D~ 300 pev

A case of the textbook example:
[R¥#%% by M. Nogami =

z (%3 F5dh)

Axially symmetric

prolate ellipsoid
(equilibrium)

also emphasized in

data by Reich and Cline (75). The bands are labelled by the component K of the total A B()hr and B R MOtthSOﬂ,

angular momentum with respect to the symmetry axis. The K = 2 band appears to represent

Nuclear Structure I1

the excitation of a mode of quadrupole vibrations involving deviations from axial symmetry

in the nuclear shape.

(1975, Benjamin, New York)



Revisit with Monte Carlo Shell Model

3s
Effective interaction: G-matrix* + V, ?dll/zz
* Brown, PRL 85, 5300 (2000) ngi
Nucleons are excited fully within stm
this model space (nho truncation) 0;11;,/22
We performed Monte Carlo Shell Model ??3’2 2pP32
(MCSM) calculations, where the largest case e
:E?:C{f,gge corresponds to the diagonalization of 3.9 x 10 3! 01211/2
Egtcv'feaerrfome dimension matrix. Ogjg
ARG Its recent extension, Quasiparticle Vacua Shell 2512
E::gil:;e:nrggi Model (QVSM)* is used, in order to incorporate ~ 1dsp2
pairing and deformation effects on an equal 0gor2
footing. 40 1107y
*Shimizu et al, PRC 103, 014312 (2021)
+ HFB (number VAP, J VBP) + GCM for y profon  neutron

wu : same interaction for the description of shell evolution in exotic nuclei



Aage Bohr's Our picture Result of MCSM calculation (QVSM)

picture c. level energies and E2 properties of 166Er o
o E2 quantities in W.u.
a. conventinal picture (prolate) b. present picture 1
(| exp calc. K=2 1L o» calc.
4+ -
A vibrational A rotatig”a' rst”aciltgs; 3 4+ i:l__l370(30) 4+ —
mode mode Tode 08} o4 3+ ] 08} o, 138(9) K R
rotational o+ 2+ 2+
mode A Q=22(3) S |
> / 5 006} SIhBEEE
/ O ) - EEEE
(G G / ( ) LD L | o| <| =| 2 3 o ¥ o
I A
O / 0.4}
4t o /I Y phonon @210 v Q=-26
1 / excitation o 4 4 v
U ) 0.2 313011) +;l
, o e | e o Op ot o
' equilibrium K:O
A% ! at triaxial
equilibriun &t prolate . i
L ellipse @ . _
L o In the present case, the mixing between K=0
O circle J=R+K and K=2 states 1s small, and can be neglected.

(cannot rotate) The MCSM result points to a triaxial shape with axis ratio, 1.00 : 1.06 :
1.35, through its T-plot analysis (see next pages).
No hint of vibrational excitation.



Shape variables and their visualization for the ground and lowest states of 16Er

oblate T-plot: Distribution of basis vec’ror's
a. legend @ C. T plots 0%, state 2%, state 1 state
| bQ’O) triaxial \ triaxial with
0) /58 @ <y> = 8.4 deg
tany = ‘/_ = =~ P

Qo ’&@
y=;0 deq.

0.2 02 03 By

3*, state 4%, state

\\ m I;"i‘i:‘;‘f'lvé‘;‘é‘

B2

(ABIN) ABisus

Similar result from Kumar invariant
<y> ~ 9.2 deg, <>~ 0.30




Two major origins of triaxiality

1. Restoration of broken rotational symmetry in the intrinsic state

2. Specific components of NN interaction
.. effects seen in unprojected PES
independently of the symmetry restoration



Broken rotational symmetry in the xy
plane as represented by the ellipse. Euler angle Y
state (dif ferent representations of the 2-dim. rotational group)

0 n/4 /2 3n/4

This symmetry is restored by the

pr'ojecTionon‘roagood Kvalue > @k=0 ox O +.+ () 4o O her Q) ot

b. preentplctur b)K=2 Do T DO  +..+ij & 4+, .= O o Q + ...+

rotational another
mode rotational ©K=2 Qo O +.-i & +.. O Fo Q ot

mode

Expectation value of H  non-zero triaxial deformation
- more binding energy

2 (d) K=0 (diagonal)

<K=0 [H|K=0>0c < DHIC D> +... + <©IHI&> +..@<©IHI >

| K=
-
K
+ o+ <©|H|Q> ..+ \ .
ke opposite

0 o (e) K=2+K =-2 (diagonal)

U e et M .00 S . <o)

elllpse o . o <;>M§ less binding energy than K=0
J R + K




Energy (MeV)

Unprojected and projected energies relative to y=0 value as a function of y

Along the cut (= 0.3) in the PES

HFB with good particle number
for the same Hamiltonian

-392-

-396 -

166Er: HFB & projections

P lowering of K=0* projected state

1)

the triaxiality gives
more binding energy to K=0*

triaxiality is not
a fluctuation but a mean effect

A non-trivial feature:

| The flat bottom of the unprojected

PES is one of the crucial factors for

(SVSM Ist &
_400 | 1 1 1 1 1 1 1 1 1 | 1 1
0 10 20 30 40 50 60
QVSM ¢ v (deg.)

yielding the distinct triaxial minimum
after the projections onto K=0* (or 2*).



energy (MeV)

energy (MeV)

pn central
pn tensor

rest
total

“total ur{projrcTéd
/

a. changes from values for y=0 (deg.o)’

/
0/‘
7
7
/

state relative to y=0 value as a function of y

An anatomy of the energy of unprojected

cent. mono.

tensor mono.
-=== tensor. multi.

==== cent. multi.

multipole components

Fu

decomposition into individual effects of
pn central, pn fensor and rest components

rther decomposition into monopole and multipole

components - major players identified

v

- tensor monopole int.
&

- central high-rank multipole (hexadecupole) int.

|

quadrupole int. gives more binding energy to more

deformed states, but is neutral for triaxiality,
because B35 x Qf + 205 ~ (0 Q)




Two origins and two appearances of triaxiality in deformed heavy nuclei

1. Basic (modest) friaxiality due to symmetry restoration with K

If only this works, deformation parameter y is typically up o 5 degrees.
This occurs in most (perhaps all) deformed nuclei.

2. Prominent triaxiality mainly due to
monopole part of pn tensor force
and/or

hexadecupole (multipole) part of pn central force
Both cases involve high-j orbitals, like 99,272 , h11/2 9/2 . i13/2 1172 . €f¢.

Deformation parameter y ranges from é to 14 degrees (or more).
This occurs in selected heavy deformed nuclei (~half ?).



° ° ]
Systematic behaviors Levels, B(E2)'s and | erenan 1z f 77—y
b MC M V M Q-momen'l's < 08 2
y S (Q S ) % g.i -
. 4ar 4+
(O v~ Multiple CoulEx value o .
B(E2; 0%y > 2*.... ) o =
¢ gamma b. 164Yb (Z=70, N=94) 4, c. 168yb (Z=70,N=98) 4
exp. 4+ | exp.
n T T | | I , , | : . v=87,142(deg) 1 g: y=4.5,6.0 (deg) . ;
g 06 g 0.6
L A w04 4+ w04
1 500 O exp 02 24 0.2
— 0 162.453) | 0+ 0 7
< - _
-g ¢ th @ d. "62Er (Z=68, N=94) 1f p— ;‘ calc  —_as] © '6%Er (Z=68,N=98) ’21 oxp. calc.
L + — 3+ 4
‘:‘0_.), 1000 B (D o \ 166Erl 7] y =8.5,12.6 (deg) <08 | Q=18 (6) . a=1e] 2+ .1 (deg) ~ 08 gz g:
~ 164D g 0.6 [ 622@41,3 54 E 06 e ozl 2t
m B y ] o 0-4 o o 0-4 e >
el M . 4
o 500 | 1 i 020 ;aa 0 0--135422 o oi 0-4.9(4; 24+ o o-znz4+2¢ o

g. 164Dy (Z=66, N=98)

f. 160Dy (Z=66, N=94)
B 7] 12
y=7.0,10.4 (deg) 1
O | | | | | | | 1 08

e

0 2 4 6 8 10 : :
Y (deg) o

0

B(E2) from 2* at Ex~2.7 MeV of 14Sm

h. 158Gd (Z=64, N=94) 4+ | calc i. 162Gd (Z=64, N=98) 14 exp. calc.

14 | exp.

Y= 3.7 deg (154Sm) .O(deg) 1?

0.8
06

supported by a recent GDR (Kleemann ef al., 2024) ”
experiment (y = 5.0 +- 1.4 deg) 02

0

y=6.2,7.7 (deg)

E(MeV)

E(MeV)




Proron number (Z)

Appearance of prominent triaxial shapes

P 27, below 075 (exp)

, prominent
i # same as above with ~

triaxiality

154Sm theoretical levels in Fig. 16 |

| 7:50 ® 0%, below 2*, (exp) ~ basic triaxiality at most
B O insufficient shape data

90 95 100 105 110 115 120

Neutron number (N)



Outline

1. Quantum many-body derivation of "rotational energy”

conceptual but practical also

2. Triaxiality and rotational states

{3. Vibrational excitations and Triaxiali’ry}

Rotational states of a microscopic object are relevant to Quantum Computing
- Proper description/understanding needed



An advanced T-plot for mixing amplitudes

Vibrational excitations

They can be searched by solving
the eigenvalue problem with an
increased number of basis vectors,

yielding more eigenstates.

Usual T plot for the probability.
Bz 6N -98) 0,

|

0.28 0.30 0.28 0.30 0.28 0.30 0.28 0.30

red (blue) circles : amplitudes are positive (negative)
amplitudes are defined to be positive for 0*; or 2*, state

schematic illustration

triaxial + vibrational built on
" ‘ triaxial
i ]
E 3 :
£ BRI
0.0 E ‘
<




more deformed
band (less triaxial,
not B vibrational)
ng7/2 -> d3/2

E(MeV)

3.5}

25 |

1.5 |

3+ ground band
| —2¢

4
+
166Er calc. 2+
(bClS IS vectors 'Y Vibrational
in and around the K=)
PES minimum as
seen in T-plot)
— 4+
decay path 2+
— 4+ yvibrational
vy K=4 K=0
4+
3y band

Level energies of 16¢Er
including vibrational states

xy plane cross section
of triaxial states

xy plane cross section of
Y vibrational states built on
triaxial states

- both K=0 and K=2 arise
K=2 ex. energy is higher by

the same reason as that for
the 2*y band



Summary

1.

Rotational excitation energy proportional to J(J+1) — K? is derived in quantum many-body
framework, without resorting to the quantization of the free rotation of classical rigid body.

Triaxial deformation occurs in virtually all deformed nuclei, because the symmetry
restoration gives more binding energy than axially symmetric shapes. = “basic triaxiality

29

Stronger triaxiality occurs, already for unprojected states, due to tensor (monopole) and/or
central (hexadecupole) forces in some nuclei, at least in 13 rare-earth nuclei, such as '°Er,
164Dy, 158Gd. - “prominent triaxiality”

Vibrational excitations from triaxial shapes are 1dentified at Ex=2.5-4 MeV with K=0 and
K=2. yy K=4 and more deformed K=0 are seen, probably in agreement with experiment.

Nilsson and Davydov models are extended/assessed, but not discussed due to time.

Reference: Prevailing Triaxial Shapes in Atomic Nuclei and a Quantum Theory of Rotation of Composite

Objects arXiv:2303.11299v6 [nucl-th]
T. Otsuka."%*** Y. Tsunoda.>® N. Shimizu,%> Y. Utsuno.”> T. Abe.®2 and H. Ueno?



Expecting a lot to come

END

Thank you for your attention



Ex(2%1) (MeV)

Appearance of (ground-state) rotational bands in nuclei

Ex(2+,) (MeV) with 3.00 < Ex(4*,) / Ex(2*,) < 3.33

all observed levels up to 2°6Pb ideal rotor:
excitation energy

proportional to J(J+1)

J=4

'.. Mg

ratio=1: 3.33
J=2

J=0

Ce-Os (66 species)
red: low 2*; near Er
Ce | pink: low 2*, near Os

Nd blue: low 0%,
Sm | grey: insufficient data

. .'g_______w

1 2 3 4 5 I 6

A3 our focus (A=150-190)




Energy (MeV)

-312

-316

-320

154Sm : typical example of basic triaxiality only

Energy of unprojected state relative
to y=0 value as a function of y

-

There 1s a tendency
towards a more

| prolate shape in
154Qm

no flat bottom in the unprojected PES
modest minimum in K / J projected PESs

level energies

K=2 excitation
(to be examine

soon 1n Sendai

1.8
_4+
1.6 s
_2+
1.4 s
1.2 — 2+
_0+

E(MeV)

0.8
0.6

28
26| Exp. Th-@

steep change ~ 7 MeV 2
(cf. ~4 MeV for 166Er) 2

y ~ 13 deg.

_4+

_3+
_2+

_4+

_2+
_0+

0.4
0.2 4+ i4+
—2+ 2+

O _O+ O+

shape
coexis]

Fence

(2019 P

RL)

v ~ 4 deg.



1m(z=62,N=92) 0; (0;)  '™Sm(Z=62N=92) 2" (2]")

0.22 0.24 0.26 0.28 0.30 0.22 0.24 0.26 0.28 0.30

B B
2. 82 2. 88



Two major origins of triaxiality

1. Restoration of broken rotational symmetry in the intrinsic state

2. Specific components of NN interaction
.. effects seen in unprojected energy as flat bottom or basin
before the symmetry restoration



Involvement of large-j orbitals are crucial for triaxiality

Hexadecupole central interaction does not work without them

Hexadecupole interaction favors more complicated shapes - triaxiality
Quadrupole interaction does not favor triaxiality, being neutral for unprojected PES

tensor monopole + central monopole push them down |

a. b.

2d3p Q2
¢ ~ )
£ attractive monopole i'n_t.j'
= fewer
E  attractive monopole int. ﬁQz (tensor+central)
2 (tensor+central) ﬁ Qo
&) _f neutron

neutron fewer

proton

extra binding
l extra binding proton

FIG. 12. Two basic modes giving more binding energies to states of triaxial shapes. The blue wavy line indicates proton-neutron monopole
interaction (see eq. (68)) which is particularly strongly attractive due to coherent contribution from tensor and central interactions. The
enhancement of the @, (implicitly including Q_») quadrupole moment is indicated by arrows.



Energy (MeV)

|||||||||||||

||||||||||||||||||||||||

1-380 b. '®Dy: HFB & —| -372- c. 184Yb: HFB & projections ]
projections

I a. 158Gd: HFB &
projections

HFB PES decompositions

| 18Gd (Z=64, N=94)
largely by tensor monopole,

1-3841 e+ - 376 -

- @ e @) i the rest gives minor contribution,

vy = 5.9 deg.

energy (MeV)

—
c.184yp

|| | 164Dy (Z=66, N=99)

m— DN tensor

wsmnn total S~

mainly by hexadecupole int.,
also by ftensor int.,

= N4 y = 7.3 deg.,

T w () most profound minimum

energy (MeV)

f.184Yb

Iy cent. mono.
==m= cent. multi.

164y b (Z=70, N=94)

also by hexadecupole int.,
tensor neutral (flat),

tensor mono.
== tensor. multi.

~T m:“" y = 8.7 deg.,

— % very flat



Evolution (stretching) of deformation parameter ¥ from ground to ¥ & ¥y bands

-392

o
©
o

energy (MeV)

-400

K & J projections of the first (n=1) MCSM basis vectors

Projected states in 16Er

unprojected y=8.5°

unprojected (positive parity) y=8.5°

unprojected (positive parity) y=9.8°

ojection

J projectio\
K=2

K=0 .

~

J=4 K=4|

J=0, K=0

a. ground band b.yband c. K=4 band

intrinsic state optimized for ground band

d. ground band

e.yband f. K=4 band

intrinsic state optimized for y band

n=1of |W)=> f P |y,

lowering of 2*, level :

partly because of

"opposite mechanism”

weakened by a larger

v value

(stretching in a quantal
way)

next page



Broken rotational symmetry in the xy
plane as represented by the ellipse. Euler angle Y
state (dif ferent representations of the 2-dim. rotational group)

0 n/4 /2 3n/4

This symmetry is restored by the

pr'ojecTionon‘roagood Kvalue > @k=0 ox O +.+ () 4o O her Q) ot

b. preentplctur b)K=2 Do T DO  +..+ij & 4+, .= O o Q + ...+

rotational another
mode rotational ©K=2 Qo O +.-i & +.. O Fo Q ot

mode

Expectation value of H  non-zero triaxial deformation
- more binding energy

2 (d) K=0 (diagonal)

<K=0 [H|K=0>0c < DHIC D> +... + <©IHI&> + -.@CDIHIO >

| K=
-
K
+ o+ <©|H|Q> ..+ \ .
ke opposite

0 o (e) K=2+K =-2 (diagonal)

4 ?rrllg?(::lm < K=28-2 [H| K=28-2 > 0¢ <C_DHIC_ D> +...+0 <§\;M§E +'@/<©|HIO >

elllpse o . o <;>M§ less binding energy than K=0
J R + K




energy (MeV)

energy (MeV)

T T T T

m— DN central /

pn tensor/
/

— rest

b. decomposition into nfonopole and
multipole componefits

=m== cent. multi.

— {ENSOr MONO.
==== tensor. multi. -

cent. mono. |

0 10 20 30

Decomposition into
pn central, pn fensor and rest components

.. all repulsive up to y ~20 deg

Further decomposition into monopole and multipole
components = major players

No central high-rank multipole (hexadecupole) int.
&
Opposite tensor monopole int.

quadrupole int. dominates pn central multipole effects

A very different situation from the nuclei discussed so far



Example of basic triaxiality

94Sm @ basic triaxiality (gamma~3.7 deg.) in the ground band
prominent triaxiality (gamma~13 deg.) in the beta+gamma bands

’ shape coexistence
Exp. Th.L_Z"/\‘L | . — R S C.

E(MeV)

24
2.2

1.8
1.6
1.4
1.2

0.8
0.6
0.4
0.2

0+

shape coexistence

A A A
AN

A

.1 0.2 0.3 0.4
B




Systematics of deformation parameter y

Deformation Parametery

14

12

10

8

6 ®
4 :
JIT T

(L1

0+, 1 2%, 4%, 0+ 2+ 4+ 2+ 3+ 4+ 2+97

152Nd 154Nd 1523m1548m 1568m 1548m

Y (deg.)

Is y=2 degrees the minimum in this region of the Segre chart ?



Nilsson model
good feature of the Nilsson model is preserved by considering
odd particle x K=0* projected even-even core (incl. antisymmetrization)

This is an extended version of the Nilsson (+BCS) model
- eNilsson (applicable also for prominent triaxial nuclei)

The quantum numbers of the Nilsson model can be used, even if the shape
is prominent triaxial. > Merit of a faster and easier understanding |



Davydov model
The energies given by Davydov model may not be good enough because of the

assumed rigid triaxiality. A stretching increases y from g to y and yy bands.

The y value from E2 transitions appears to be more precise.
I't seems that the claimed triaxiality in strongly deformed nuclei could be

appreciated more.
If y=9 degrees, 3y =27 degrees, and

o1y o B(E2;21>0) 3—2 sin?(§y) 101, _
b(E2; 21 - 0) e 31 — @)] . (26> % [1+0.9510] = 0.9755
16 the ratio is 1: 0.0251
b(E2; 22 — 0) = ;[1_ 5;2;:;(%6] , (2.7)> £ [1-0.9510] = 0.0245

experimentally this ratio is 1: 0.024(1)
from Davydov & Filippov, Nucl. Phys. 8 (1958)

Davydov et al. Comparison of the predictions of the theory with the experimental data
addressed presently known to us thus confirms the assumption that some even nuclei
do not possess axial symmetry.




Remark on double y-phonon (yy) state

energy (MeV)

K & J Projections of the first (n=1) basis vectors
of MCSM (QVSM) for g and y bands

Projected states in 1%Er

-392

-396

-400

n=lof [¥)=>_f,P" 1Y)

n

unprojected y=8.5°

unprojected (positive parity) y=8.5°

a. ground band

b. y band

c. K=4 band

intrinsic state optimized for ground band

This is what is
expected from the
rigid-triaxial rotor

model, including .
the Davydov model. /|

J=2,

Ex o Ke, I

J=0, K=0 J=0

d. ground band e.yband f. K=4 band

intrinsic state optimized for y band

g. exp.

double y-phonon (yy)
state
(long-term mystery)

partly because of
opposite mechanism
weakened by larger

v value

(stretching in a
quantal way)




Remark on double y-phonon (yy) state (continued)

K & J Projections of the first (n=1) basis vectors
of MCSM (QVSM) for g and y bands

Projected states in 1%Er

-392

o
©
o

energy (MeV)

-400

n=1of W)=Y f,P" |y

unprojected y=8.5°

unprojected (positive parity) y=8.5°

a. ground band b.yband c. K=4 band

intrinsic state optimized for ground band

unprojected (positive parity) y=9.8°

d. ground band e.yband f. K=4 band

intrinsic state optimized for y band

| // K=4 member

so-called

double y-phonon (yy)
state

(long-term mystery)
| naturally appears as

partly because of
the stretching with
a larger y value

—{  in a quantal way
g. exp.




Summary

1. Rotational excitation energy proportional to J(J+1) — K? is derived in quantum many-body
framework, without resorting to the quantization of the free rotation of classical rigid body.

2. Triaxial deformation occurs in virtually all deformed nuclei, because 1t gives more binding
energy than axially symmetric shapes. = “basic triaxiality” It is not a fluctuation.
The ground band of ’*Sm is an example, while side bands show shape coexistence with v.

3. Stronger triaxiality occurs due to tensor (monopole) and/or central (hexadecupole) forces in
some nuclei, at least in 13 rare-earth nuclei, such as '°°Er, 14Dy, 158Gd.
= “prominent triaxiality”

4. Nilsson model may be extended even to nuclei with triaxial shapes. (= eNilsson model)

5. The prevailing triaxiality in strongly deformed nuclei proposed by Davydov may receive
more appreciation, putting aside his model’s rather poor predictive power for energies.

Reference: Prevailing Triaxial Shapes in Atomic Nuclei and a Quantum Theory of Rotation of Composite
Objects arXiv:2303.11299v6 [nucl-th]
T. Otsuka."%*** Y. Tsunoda.>® N. Shimizu,%> Y. Utsuno.”> T. Abe.®2 and H. Ueno?



Experimental test of triaxiality

Direct measurement of the shape is most desirable
Relativistic Heavy-TIon Collision
can also cover down to basic triaxiality.

Multiple Coulomb excitation (initiated by Doug Cline)

already (1990's) provided with consistent nice data with

not-so-natural interpretation (preconceptions cloud your eyes)
also for 1Er by Fahlander et al. (1992), for '**Dyand '°8Gd, by Werner, et al (2005).

renewed possibilities with AGATA and GRETA (Ay = 1 deg. will be great)

Other plausible possibilities ... even up to EIC

various (e,e’) like GDR or M1 excitations
and more



Types of ellipsoidal shapes of nuclei and comparison to molecules

a. 02 molecule b. H2O molecule

3 >

C. nucleus (prolate) d. nucleus (triaxial) Z

towew' 0 0

Deformed (=non-spherical) objects rotate in classical and quantum senses.



PRL 97, 162502 (2006)

PHYSICAL REVIEW LETTERS

week ending
20 OCTOBER 2006

Global Calculations of Ground-State Axial Shape Asymmetry of Nuclei

Peter Méller,l’* Ragnar Bengtsson,2 B. Gillis Carlsson,2 Peter Olivius,2 and Takatoshi Ichikawa’
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Questions were raised from some viewpoints, but it remained unsettled.

Eur. Phys. J. A (2019) 55: 15
DOI 10.1140/epja/i2019-12665-x gl'j$S$éJ§|?§glAJgNAL A

Review

“Stiff” deformed nuclei, configuration dependent pairing and the
3 and ~ degrees of freedom

Sharpey-Schafer et al. (2019) on y-phonon
J.F. Sharpey-Schafer':*, R.A. Bark?, S.P. Bvumbi®, T.R.S. Dinoko?, and S.N.T. Majola®:"

Data from Multiple CoulEx experiments showed finite y values, but no explicit strong

claim of triaxiality was made.
Cline et al (1986,1990), Fahlander et al (1992), Werner et al (2005), ...

INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS G: NUCLEAR AND PARTICLE PHYSICS

J. Phys. G: Nucl. Part. Phys. 27 (2001) R1-R22 www.iop.org/Journals/jg  PII: S0954-3899(01)18337-4

TOPICAL REVIEW

on B-phonon or f vibration

Characterization of the 3 vibration and 03 states in
deformed nuclei

P E Garrett

P. Boutachkov, A. Aprahamian, Y. Sun, J.A. Sheikh & S. Frauendorf empir'ical appr‘oach

The European Physical Journal A - Hadrons and Nuclei 15, 455-458 (2002)




Furthermore, there have been microscopic approaches also,

where the description

(a)

Theory
Theoretical (MeV)

0.1F

x|

+ N . °s
2" Excitation Energies .' b I

7’
e

of excited bands are still a challenge.

0.1

vr

Theory

Theoretical (MeV)

—
T

%%

—

Experimental (MeV') EXPel" ' men'l'

FIG. 20. Excitation
experiment [24].

Experimental (MeV)

Experiment

energy of the 0 state compared with

Gogny -> 5DCH
(Bohr-Hamiltonian)

Delaroche et al.,
PR C 81, 014303 (2010)

Correlations between theoretical &
experimental values (scale: logarithmic)

10 T T T T |,,
- + -
2, N 4
’
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. o® I,
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: /s

E.Mev) Experiment

FIG. 19. (Color online) Excitation energy of the second J =2
excitation, comparing 352 nuclei. Experimental data are from
Ref. [24]. The 2j levels are marked with red color.



eigenstate
N/

Basic formulation of Monte Carlo Shell Model

Ny : number of basis vectors

N, : number of (active) particles

“P(D» = ZCZP J’H‘ ¢(D (n))> Nj, : number of single-particle states
n=I
| | Nl
amplitude ¢(D(”))> H[Z TDi(;)j‘ —> n-th basis vector (Slater determinant)
Projection op. - \_'_,
Superposition of original single-particle state
E(D)=(¥(D)|H|¥(D))
Minimize E(D) with respect to D utilizing
Quantum MC and variational methods Bogoliubov state in the QVSM (advanced version)

Step 1: Shift randomly matrix matrix D. (The initial guess can be taken from Hartree-Fock.)
Select the one producing the lowest E(D) (rate < 0.1 %)

Step 2:

Polish D by means of the conjugate gradient (CG) method variationally.



Identification of nuclear shape by T-plot of MCSM
T-plot of O* states of 78Ni (Z=28, N=50)

®Ni(Z =28,N=50) 0,

Location of circle: shape
quadrupole deformation of
unprojected MCSM basis vector

- Area of circle: importance

overlap probability between each projected

basis vector and the eigen wave function

» Potential energy surface (PES) is calculated by

Constrained HF for the same interactio

n

200 -

___ 150}
[}

£
7~

S 100t
&
<

50

spherical prolate

angular-momentum,

N

parity projection

P\ ,)

=Y 7,

MCSM eigen wave function

MCSM basis vector

Slater determinant or
Bogoliubov states

e

-341.2
-342.2
-343.2

1-344.2

+-345.2

+-346.

-347.

-348.

(BCS with deformation)

" Ni(Z =28,N=50) 0,

Y. Tsunoda, et al.
PRC 89, 031301 (R) (2014)




A remark about fluctuations or variances
after orthogonalization (preliminary)

B> y (deg.)
mean standard mean standard
value deviation value deviation
166Ep QO+,  ground state 0.292 0.006 8.2 2.3
2",  yband head 0.294 0.005 9.1 1.7
4+, v v band head 0.294 0.005 9.5 1.5
1545m 0+, ground state 0.275 0.011 3.7 2.9
0",  Pband head 0.240 0.010 12.6 3.8
2v, 8 band head 0.278 0.009 5.9 2.6



valence nucleons are sparsely configured

b. Level energies of atomic nuclei with spherical and ellipsoidal shapes
(examples)
+ herical sh d stat
because of the shell structure ol 4 f;se"ca shape (ground state)
—— n
>
| = - ellipsoidal shape
1 —
il \ 166 rotor limit
8 | | \“‘ 6+ 6+
‘ ‘\\ 4+ S, &
short-range P ot — o+
. | 0 o+ \ o+ ' 0+ —
attractive 6 LIl \ \
nuclear force | '.|
between > - lll' o C All measured lowest 2% level energies (as of 2022)
nucleons =3 Al
produces more ,,;‘—
binding energy o

range of nuclear forces
<<

size of single-particle orbital
\_ (the bigger the heavier) )

60 80 100 120
neutron number (N)



v-decay of the Isovector Giant Dipole Resonance of **Sm: Smekal-Raman Scattering
as a Novel Probe of Nuclear Ground-State Deformation

J. Kleemann ©@,'+* U. Friman-Gayer ® %31 J. Isaak ©,! O. Papst ®,! N. Pietralla®.! K.
Prifti,) V. Werner ©,! A. D. Ayangeakaa® %2 T. Beck®,}** G. Colo®,°> M. L. Cortés,’ S. W.
Finch ©,2:3 M. Fulghieri,*® D. Gribble ®,%3 K. E. Ide ®,! X. James,*2 R. V. F. Janssens ®,%3
S. R. Johnson ©,%2 P. Koseoglou ®,! Krishichayan ®,2:3 D. Savran ®,° and W. Tornow ©?2:3
! Technische Universitit Darmstadt, Department of Physics, Institute for Nuclear Physics, 64289 Darmstadt, Germany
2 Department of Physics, Duke University, Durham, North Carolina 27708-0308, USA
* Triangle Universities Nuclear Laboratory (TUNL), Duke University, Durham, North Carolina 27708, USA
4 Department of Physics and Astronomy, University of North Carolina at Chapel Hill, North Carolina 27599-3255, USA
® Dipartimento di Fisica, Universitd degli Studi di Milano and Istituto
Nazionale di Fisica Nucleare, Sezione di Milano, 20133 Milano, Italy
®GSI Helmholtzzentrum fiir Schwerionenforschung GmbH, 64291 Darmstadt, Germany

observable sensitive to the structure of the GDR. Finally, this sensitivity of the y-decay behavior in
particular on small differences of the GDR resonance energies is shown to place strong constraints on
the nuclear shape, here, as a show-case for the triaxiality of 1549m. The obtained shape parameters
B = 0.2926(26) and|y = 5.0(14)° |agree well with recent configuration interaction calculations within
the Monte Carlo Shell Model.




Energy (MeV)

By including more basis vectors, we can get closer to exact solutions.

-303}

-304}

-305}

-306-

The MCSM calculation is carried out by
successive search of basis vectors:

%4Ge in pfg9-shell, 10'*dim

\

MCSM+CG

1 1 1 1 1 | \
0 50 100
Number of basis vectors \
(deformed Slater determinants)

w011 3o

The 7=1 basis vector i§ fixed first by
stochastic and varia¥ional searches for
the most optimal DY matrix.

The initial guess for this search can be a
mean-field solution, and we go beyond.

The n=2 basis vector is fixed next, under
the presence of the #=1 basis vector.

The n=3, 4, ... basis vectors are fixed likewise,
driving the result closer to the exact solution.



Physics 2022, 4, 258-285. p
n physics hTTps //doi. or'g/IO 3390/physics4010018 m'\“\"y

Review

Emerging Concepts in Nuclear Structure Based on the
Shell Model

Takaharu Otsuka %3

Special Issue "The Nuclear Shell Model 70 Years after Its Advent: Achievements and Prospects"
edited by A. Gargano, G. De Gregorio and S. M. Lenzi

Shell evolution due to the monopole interaction
Type II shell evolution and shape coexistence

Triaxiality dominance in heavy nuclei as a consequence of the

self-organization due to the monopole-quadrupole interplay <€ a bit more progress
<> traditional prolate dominance picture

New neutron dripline mechanism due to the monopole-quadrupole
interplay, exemplified for F, Ne, Na and Mg isotopes
besides the traditional mechanism with single-particle nature

Alpha-clustering is not included



PES near the minimum: refined contour plots

g)o)'
)
&
)f\ v y=0 deg.
B,

two most attractive
monopole interactions
hi1/2-hg/2 and g7/2-113/2
are weakened to
average value

monopole interactions
are replaced by constant
SPEs assessed

for spherical reference
state (Monopole-Frozen)

Original Hamiltonian

minimum is 0.4 MeV
below prolate energy

—
-
-
e
-

b.Hamiltonian with hg/z—h11/2 and
g7/2-113/2 monopole interactions
reduced to average

minimum is 0.1 MeV
below prolate 6.3 deg

—_——
e

—_——
—_——
- —_——
-_——
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c.Hamiltonian monopole-frozen
with spherical reference state

minimum is 0.1 MeV
below prolate

1.6 MeV

1.2 MeV

4 0.8 MeV

0.4 MeV
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T plot of 0*, state




