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Outline

v For even-even rotating nuclei 
Ø Davydov-Filippov model applied to 2+ states becomes assumptions-free 
Ø use ratios of E2 matrix elements, R22/02 and/or R22g/22 to deduce g (including prolate-like or oblate-like)

v For even-even rotating nuclei 
Ø Analysis of the Gamma-ray energies vs Spin plots for the ground-state band indicate nuclear shapes 

(axially symmetric, g-rigid, g-soft) 

q Wobbling: vibrational and rotational excitations in even-even and odd-mass triaxial nuclei
Ø Definitions and conflicting terminology
Ø How to distinguish between vibrational and rotational excitations

q How to deduce g in simple, easy, (practically) model-independent way?



Global calculations on axial asymmetry of nuclei
DEg - calculated energy difference assuming triaxial and axially symmetric nuclear shape at ground state  

axially symmetric, grey triaxial (like kiwi fruit), color

Moller et al., PRL 97, 162502 (2006)



How to measure triaxial deformation
in a model-independent approach?

Kumar-Cline sum rules analysis
Ø rotational invariants – the same in the intrinsic and laboratory frame – <Q2>, <Q3cos(3g)>, <Q4>…

Need a large number of Mst
(at least 4  for second-term sums)

Mst usually measured in Coulex

J. Henderson, PRC 102, 054306 (2020)
not many nuclei with sufficient 
info on Mst



Empirical evidence for MOI 
from measured energies and 
electric quadrupole matrix elements for 12 
even-even rotating nuclei with R4/2 > 2.7

intermediate

longshort

J.M. Allmond, J.L.Wood, 
Physics Letters B 767 (2017) 226–231
J.M. Allmond, CWAN’23 conference, 

for R4/2 > 2.4 

for g = 30o

Á1 = 4 Á2 = 4Á3

Even-even rotating nuclei with quadrupole shapes

q Davydov-Filippov model, assumptions:
Ø Spin dependence of the MoI - Á0(I) is constant 
Ø Dependence of MoI with respect to g - irrotational-flow model

q Generalized TR model, applied for the 2+ and 2+
g states

Ø Spin dependence of the MoI - redundant
Ø Asymmetry of MoI described with a new parameter G independent of g

ü the model becomes assumptions free for even-even rotating nuclei 
ü deduced triaxial deformation gTR for 26 even-even nuclei with R4/2 > 2.4
ü needs 4 matrix elements and 2 excitation energies



Measure g for even-even rotating nuclei
in an assumptions-free way

using 2 E2 matrix elements



Even-even rotating nuclei

We have expanded the generalized TR approach
Ø by adopting the irrotational-flow dependence of MoI not as a model assumption but as empirically proven dependence
Ø work with 2+ and 2+

g states
Ø introduce ratios of two E2 matrix elements 
within the DF equations (assumptions-free)
Ø need 2 matrix elements per ratio
Ø test the deduced g against the gKC and gTR
Ø extract g deformation based on these ratios
Ø for all even-even rotating nuclei where 
data on two matrix elements are available 



Even-even rotating nuclei, 
Ø R4/2 > 2.4, 
Ø data on two matrix elements available for more than 60 even-even nuclei
Ø deduced triaxiality in an assumptions-free approach
Ø distinguishes between prolate-like and oblate-like shapes E.A. Lawrie, J.N. Orte, submitted

ü sensitive for 20o < g < 40o

ü does not require knowledge of g band
sensitive in the full range 0o < g < 60o



Measure g for even-even rotating nuclei
in an assumptions free way

using g-ray energies in the gs band



Even-even rotating nuclei

q Davydov-Filippov model assumptions:
Ø Spin dependence of the MoI

is it possible to consider states with I > 2 
while keeping Á(I) dependence irrelevant?

Ø the shape of 𝐸g(𝐼) reflects the dependence of Á(I)
Ø if Á is constant - Eg vs I is linear
Ø the crossing point with x-axis, where 𝐸g(𝐼)=0, is at  Ic = 0.5

q axially-symmetric shape

0

100

200

300

400

500

600

0 2 4 6 8 10 12

G
am

m
a 

En
er

gy
 (k

eV
)

Spin I

160-172Er

160Er-gs

162Er-gs

164Er-gs

166Er-gs

168Er-gs

170Er-gs

172Er-gs

𝐸(𝐼) =
ħ!

2Á
𝐼(𝐼 + 1)

𝐸g(𝐼) =
ħ!
!Á [4𝐼 − 2]

While the gs bands may have different MoI, the crossing point is specific for axially symmetric nuclei, Ic = 0.5



Even-even rotating nuclei

Ø 𝐸g(𝐼, g = 30o) crosses the x-axis is Ic = -1

q stable triaxial shape

𝐸(𝐼) = ħ!
!Á"

𝐼"!+ ħ!
!Á!

𝐼!!+ ħ!
!Á#

𝐼#!

𝐸g(𝐼, g = 30o) =
ħ!

2Á [4𝐼 + 4]

While the gs bands may have different MoI, the crossing point is specific for rigid triaxial nuclei  -1 < Ic < +0.5

no analytical solutions, except for g = 30o 

(irrotational-flow MoI dependence with g)

triaxial rotor

0o < g < 10o        Ic ~ +0.5 
g = 15o Ic ~ 0 
g = 20o Ic ~ -0.5 
25o < g < 30o Ic ~ -1 

Ø DF calculations yield   0o < g < 30o     -1 < Ic < 
+0.5



Even-even rotating nuclei
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Example:
according to the global calculations
nuclei near 140Gd are triaxial

Results:
156-164Gd,  Ic = +0.5,    g < 10o

154Gd,  Ic = +0.3,         g ~ 13o

138Gd,  Ic = -0.1,          g ~ 16o 

140Gd,  Ic = -0.5,          g ~ 20o

The lighter Gd isotopes develop axial asymmetry 



Even-even rotating nuclei

Ø 𝐸g(𝐼) crosses the x-axis is Ic = -2

q g-vibrations (Wilets-Jean) 

𝐸 𝐼 = 𝐴 𝐼(𝐼 + 6)

𝐸g 𝐼 = 𝐴 [4𝐼 + 8]

0

200

400

600

800

1000

1200

1400

-2 0 2 4 6 8 10 12 14 16 18

G
am

m
a 

En
er

gy
 (k

eV
)

Spin I

122-152Ce

122Ce-gs
124Ce-gs
126Ce-gs
128Ce-gs
130Ce-gs
132Ce-gs
134Ce-gs
136Ce-gs
138Ce-gs
146Ce-gs
148Ce-gs
150Ce-gs
152Ce-gs

Example:
122-126Ce à Ic ~  0.5 0o < g < 10o

128-130Ce à Ic ~  0 stable triaxial, ~15o

132-134Ce à Ic ~ -1 to -0.5 stable triaxial, 20o < g < 30o

136-138Ce  à Ic ~ -1.5 to -1.7 g-soft around triaxial shape13

Ø 𝐸g(𝐼) crosses the x-axis is -2 < Ic < -1

q g-vibrations around and average triaxial shape?



Ø 𝐼$ ~ + 0.5 axially symmetric, g < 10o

Ø −0.5 < 𝐼$ < 0.5 stable triaxial g = 10o - 20o

Ø −1 < 𝐼$ < −0.5 stable triaxial
Ø -2 < 𝐼$ < −1 g vibrations around triaxial shape
Ø 𝐼$ = −2 g vibrational

all even-even rotating nuclei with 2.4 < R4/2 < 3.3
does not distinguish between prolate-like (g < 30o)

and oblate-like  (g > 30o)

E.A. Lawrie, N. Xulu, in preparation



E.A. Lawrie, N. Xulu, in preparation
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Wobbling in triaxial nuclei

harmonic vibrational
or

rotational excitation



H = A1 I12 + A2 I22 + A3 I32 »A1 I2 + ħw (n+1/2) at high spins

wobbling à harmonic vibrational excitation
à n  - number of wobbling phonons
à quantization in excitation energy, 
à quantization B(E2; nà n -1) ….

Bohr and Mottelson, Nuclear Structure

Definition of wobbling ~ 1970s

R||
vibrational 
phonon

wobbling à triaxial-rotor model at high spins



1970 1980 1990 2000 2010 2020

B&M definition wobbling à harmonic vibrational excitation

wobbling à TSD bands in the odd-mass Lu isotopes



1970 1980 1990 2000 2010 2020

R||
rotational

H = A1 R1
2 + A2 R2

2 + A3 R3
2 »A1 I2 + ħw (n+1/2) at high spins

wobbling à triaxial rotor model at low spins
à rotation excitation
à harmonic vibrational features fall away
à large B(E2; n à n-1)

F&D definition of wobbling à rotational excitation

since 2014 many wobbling bands proposed in 
A=100, 130, 160, 190 mass regions



1970 1980 1990 2000 2010 2020

Two conflicting definitions
F&D definition of wobbling à

rotational excitation    
triaxial rotor at low spin

B&M definition wobbling à
harmonic vibrational excitation
triaxial rotor at high spin

Ø conflict in the definitions
Ø many triaxial-rotor studies, which were published between 1980s and 2015 as rotational bands, would 

now qualify as wobbling bands
v all g-bands in even-even nuclei calculated with the triaxial rotor model (which were never adopted 

as wobbling within the B&M definition) would now, with the F&D definition, qualify as wobbling 
bands

v similarly rotational bands in triaxial odd-mass nuclei that were not considered as wobbling within 
B&M definition, would with the F&D definition qualify as wobbling



what is core difference between the two definitions
à B&M: wobbling is a excitation of harmonic vibrational nature
à F&D: wobbling is a excitation of rotational nature

How to distinguish between vibrational and rotational excitations? g = 30o



Examples on distinguishing between vibrational and rotational nature
Eexc(I) µ n for vibrational and µ m2 for rotational type of excitation 

Eexc(I) µ k2 – rotational excitation 

192Os

Eexc(I) µ k – vibrational excitation 

163Lu



what is core difference between the two definitions
à B&M: wobbling is a excitation of harmonic vibrational nature
à F&D: wobbling is a excitation of rotational nature

How to distinguish between vibrational and rotational excitations? g = 30o



192Os

163Lu

B(E2)intra(k=0) > B(E2)intra(k=0) à rotational

Ø B(E2)intra(I) should be constant with I for vibrational and increasing with I for rotational
Ø B(E2) inter(IàI-1) should be ~1/I for vibrational and not so for rotational

B(E2)intra(TSD1) = B(E2)intra(TSD2) à vibrational
B(E2)intra(TSD2àTSD1) ~ 1/I à vibrational

Examples on distinguishing between vibrational and rotational nature



test whether the excitation is caused by vibrational phonon or by rotation…

E.A. Lawrie, Chirality and Wobbling; edited by C.M. Petrache, Edited by Taylor & Francis Group 

g = 30o



Summary
q How to measure triaxiality in a (practically) model-independent way?

Ø Davydov-Filippov model becomes assumptions-free for even-even rotating nuclei
( if applied to 2+ states only as the spin dependence of MoI becomes redundant)
ü using the ratio of two E2 matrix elements for the 2+1 state we can deduce g
ü using the ratio of two E2 matrix elements only for the 2+1 and 2+

g state we can deduce g
ü available data allows to extract g for more than 60 even-even rotating nuclei

E. A. Lawrie, J.N. Orte, submitted

q Conflicting definitions of wobbling 
(B&M wobbling is a harmonic vibrational excitation; F&D wobbling is a rotational excitation)

Ø It is proposed to investigate further the nature of the experimentally observed bands, is it vibrational or rotational
Ø A number of criteria to distinguish between vibrational and rotational nature were defined and applied 

E.A. Lawrie, chapter in the book 
Chirality and Wobbling; edited by C.M. Petrache

Ø the spin dependence of MoI becomes irrelevant when studying Ic of the Eg(I) plots for even-even nuclei
ü based on the crossing Ic, one can deduce whether the nuclear shape is axially symmetric, rigid triaxial, or g-

soft around average triaxial shape, or g-vibrational (Wilets-Jean)
ü systematic study of all even-even rotating nuclei with known rotational bands was compared with global 

calculations for axially asymmetric nuclei
E. A. Lawrie, N. Xulu, in preparation



This work is based on the research supported in part by the National Research Foundation of South Africa  



g deduced by the ratios of matrix elements



0

100

200

300

400

500

600

700

800

900

0 2 4 6 8 10 12 14 16 18 20

Ga
m

m
a 

En
er

gy
 (M

eV
)

Spin I

168-184Hf

168Hf-gs
170Hf-gs
172Hf-gs
174Hf-gs
176Hf-gs
178Hf-gs
180Hf-gs
182Hf-gs

0

100

200

300

400

500

600

0 2 4 6 8 10 12 14 16

Ga
m

m
a 

En
er

gy
 (M

eV
)

158-170Dy

158Dy-gs
160Yb-gs
162Dy-gs
164Dy-gs
166Dy-gs
168Dy-gs



0

100

200

300

400

500

600

0 2 4 6 8 10 12 14

154-164Gd

154Gd-gs
156Gd-gs
158Gd-gs
160Gd-gs
162Gd-gs
164Gd-gs

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16

132-160Sm

132Sm-gs
152Sm-gs
154Sm-gs
156Sm-gs
158Sm-gs
160Sm-gs





0

200

400

600

800

1000

1200

1400

-2 0 2 4 6 8 10 12 14

Ga
m

m
a 

En
er

gy
 (M

eV
)

104-120Pd

104Pd-gs
108Pd-gs
110Pd-gs
112Pd-gs
114Pd-gs
118Pd-gs
120Pd-gs

0

100

200

300

400

500

600

700

800

-2 0 2 4 6 8 10

104-114Ru

104Ru-gs
108Ru-gs
110Ru-gs
106Ru-gs
112Ru-gs
114Ru-gs



shape co-existence
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1970 1980 1990 2000 2010 2020

B&M definition wobbling à harmonic vibrational excitation

wobbling – triaxial rotor model at high spin



1970 1980 1990 2000 2010 2020

B&M definition wobbling à harmonic vibrational excitation

wobbling – cranking + RPA



What is “high spins”?

PRC, 101, 034306 (2020)

f(n, I) < 0.15 for (n = 1 , I > 20) 
(n = 2 , I > 34)

If the condition is satisfied

I

I

yrast
excited
phonon

J 

J →  vibrational phonon

A1= ħ
!

!Á"

Bohr and Mottelson, Nuclear Structure

Even-even
Even-even



Rotation of even-even triaxial nucleus: tilted precession Empirical evidence for MoI
from measured energies and 
electric quadrupole matrix elements
follow hydrodynamical MoI
dependence of g

J.M. Allmond, J.L.Wood, 
Physics Letters B 767 (2017) 226–231 

H = ħ
!

"Á"
𝑅12 +

#ħ!

"Á1
(𝑅22 + 𝑅32) =

ħ!

"Á"
𝑅12 + 4 𝐼 𝐼 + 1 − 𝑅12 =

= ħ!

"Á"
{4𝐼 𝐼 + 1 − 3𝑅12}

§ R1 projection of I on the intermediate axis, 
§ R1 is good q.n.
§ R1 = I, I - 1, I - 2….
§ each R1 à a rotational band

With hydrodynamical-type MoI for g = 30o there is a symmetry in 
H  because Á2 (short) = Á3 (long)  = ¼ Á1

i

HR = ħ
$

"Á%
𝑅12+

ħ$

"Á$
𝑅22+

ħ$

"Á&
𝑅32



R1 = I, I - 1, I - 2…. = I – m, where m = 0,1,2,3…

H = ħ!

"Á"
4𝐼 𝐼 + 1 − 3𝑅12

Quadratic dependence on I
Quadratic dependence on m

rotational 
nature

Rotation of even-even triaxial nucleus: tilted precession

g.s. band g band

R1 = I à g.s. band

R1 = I - 1 à g band, odd spins
R1 = I - 2 à g band, even spins

E = ħ!

"Á"
𝐼 𝐼 + 4 + 3𝑚 2𝐼 − 𝑚

yrast state

excited
state

I

I

J

i



Wobbling due to phonon excitation
Precession in the g band approximated at high spins with wobbling phonon
H = ħ!

!Á"
I2 + ħw (n+1/2)

the quantization characteristics of phonon excitations:
• quantization in energy, E(I, n) = n E(I, 1), i.e. E(I,n=2) = 2 E(I,n=1)
• quantization in B(E2)out,     B(E2; n à n-1) = n B(E2; 1 à 0),

eg B(E2; n=2 à n=1) = 2 B(E2; n=1 à n=0),
• decays between the even-spin members of  the g band and the g.s. band are 

forbidden (simultaneous destruction of two phonons)
g.s. band
0-phonon

1-phonon
wobbling
odd spins
of g band

2-phonon
wobbling
even spins
of g band

E2

E2

E2

E2

at high spins

E2x

Tilted precession due to rotation 
Precession in the g band at low spins (for g = 30o)
E = ħ!

!Á"
𝐼 𝐼 + 4 + 3𝑚 2𝐼 − 𝑚

• The energy E(I, n) depends on m in quadrature, the quadratic term is 
small if  m << 2I

• no quantization required  in B(E2)out, 
eg B(E2; n=2 à n=1)  ¹ 2 B(E2; n=1 à n=0),

• decays between the even-spin members of  the g band the g.s. band are 
allowed

g band in triaxial-rotor model is 
understood as precession

It looks like anharmonic wobbling 
at high spins



g.s. band
m = 0

2+ g band
m = 2

4+ g band
m = 4

Excited bands:
energy for TRM and for phonon excitations

2+ g band
m = 1

4+ g band
m = 3

harmonic vibrational
linear dependence of m

Triaxial rotor
quadratic dependence of m

DE

At high spins the rotational energy is large 
and DE can be small,
thus approximately anharmonic vibration



B(E2) transition probabilities:
TRM and phonon excitations

Intra-band
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𝐵 𝐸2, 𝑛, 𝐼 → 𝑛 − 1, 𝐼 − 1 =
5
16𝜋 𝑒

! 𝑛
𝐼 ( 3𝑄)𝑥 − 2𝑄!𝑦)!𝐵 𝐸2, 𝑛, 𝐼 → 𝑛, 𝐼 ± 2 = *

"+,
𝑒!𝑄!!

Inter-band n ® n-2

TRM – allowed,
2+

g à 2+
gs, 2+

g à 0+
gs

4+
g à 4+

gs, 4+
g à 2+

gs

6+
g à 6+

gs, 6+
g à 4+

gs

Phonon – forbidden
destruction of 2 phonons

Considerable differences in the B(E2) probabilities for tilted precession and wobbling phonons

B(E2,n,I->n-1,I-1)B(E2,n,I->n,I-2) B(E2,n,I->n-2,I-2)
B(E2,n,I->n-2,I)



Rotation of triaxial nucleus: tilted precession

g.s. band

g band

J. Meyer-ter-Vern, Nucl. Phys. A 249, 111 (1975)

I
R1

i

I
R1

i

g band is precession 
(rotational nature)

Since its introduction in the 1950s wobbling has been searched for in even-even nuclei for many decades.
Many g bands were discovered at low spins, some of them have been interpreted using the triaxial-rotor model, but they 
were never considered as wobbling…
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Precession in odd-mass nuclei

j

PRC, 101, 034306 (2020)

Longitudinal coupling:
à phonon approximation is applicable at high spins;

anharmonic phonons
Transverse coupling:
à phonon approximation is not valid at any spin

Ri

Rs/l j
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s

i
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