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Genesis of the project
BA Brown: Several conference presentations drawing 
attention to E6 gamma decay, including Nuclear Data 2013.

J.N. Black et al., 
Phys. Rev. Lett 26, 
451 (1971).

ND2013 audience: “I bet that’s a sum-peak”.

AE Stuchbery to T Kibedi: “I bet we could measure that”.

G.J. Lane, private communication (2015)
GJ Lane (2015): “This might work”.
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Nuclear shell model
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Spin-trap
1f7/2[J(π-2) = 6+] [J(ν) = 7/2-]

Yrast sequence

1f7/2[J(π-2) = 0+] [J(ν) = 7/2-]

R. Du Rietz et al., Phys. Rev. C 72, 014307 (2005).High-spin states in 53Fe
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53mFe decay

Selection rules: 
•  
•  

In general, gamma decay is dominated by 
the lowest multipole order permitted: 

 

 

| Ii − If | ≤ L ≤ | Ii + If |
ΔP = (−1)L or (−1)L−1

λ(E(L + 1))
λ(EL)

≈ 10−5

λ(M(L + 1))
λ(ML)

≈ 10−5

λ(EL)
λ(ML)

≈ 102

E
6 E
4

M
5

 are prevalent in atomic and nuclear systems 
 is rare (around 1100 known) 
 is very rare (around 170 known) 
 is very, very rare (around 25 known) 
 is unique (one claim so far)

L = 1, 2
L = 3
L = 4
L = 5
L = 6
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Australian Heavy Ion Accelerator Facility (HIAF)

14UD 
accelerator

https://physics.anu.edu.au/tour/nuclear/
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Accelerators:  
• 14UD tandem accelerator (~ 14 MV) 
• LINAC (6 MV) 

10 beam lines:  
• Fundamental research 
• Space Irradiation Beam Line 

Research: 
• Nuclear structure 
• Nuclear reaction dynamics 
• AMS  
• Dark Matter / Astroparticle physics
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Side-step
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Enge Magnetic Spectrometer

Light-Ion (Lion) detector

First (d,p) spectrum (09/24)
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-ray spectroscopy γ
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CAESAR (Compton Suppressed Array) 
LaBr3 upgrade (2025)

New target chamber (2022)
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53mFe γ-ray data 
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Repeating irradiation cycle: 
7.5 minutes beam on (production) 
20 minutes beam off (isomer decay) 

Gates A + B:  
~ 10 different nuclides. 

Gates A - B:  
Isolate 53mFe decay.  

- Known γ rays from 53mFe 
- Including (weak) peak at 3041 keV 
- And a feature at 2029 keV
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, 2 pnA, 50 MeV 
10 mg/cm2 targets
51V(6Li,4n)53mFe
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γ-ray summing 
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Problem for weak branches

‘singles’
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γ-ray summing Method 1: ‘Experimental’

Expressions that connect sum components to S2029, Ii, bi, .εi, Wi, j(0)

Method 2: ‘Geometric’
Considering the change in counting efficiency with moving the radial detectors.

Method 3: ‘Computational’

Single expression that 
combines quantities that 
were measured in the 
experiment.

Method 4: ‘Monte Carlo’

Decay of 53mFe proceeds via randomised pathways that are weighted by the 
measured transition branching ratios.

Sum-component is ≈ 50% of the total yield of the 3041-keV γ ray 
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Results

• Sum contributions to E4, M5, E6 accounted for. 

• Reduced transition strengths deduced. 

• Consistent with the 1975 value of Black et al, 
and an unpublished result in D. Geesaman’s 
PhD thesis.

B(X L; Ji → Jf ) =
L[(2L + 1)!!]2

8π (L + 1) ( ℏc
Eγ )

2L+1

Pγ(X L; Ii → If )

Bw(EL; Ji → Jf ) =
1

4π ( 3
Lγ + 3 )

2

r2L {e2( f m)2L}

Bw(ML; Ji → Jf ) =
10
π ( 3

Lγ + 3 )
2

r2L−2 {μ2
n ( f m)2L−2}

[1] 10.1103/PhysRevLett.26.451

[2] 10.1103/PhysRevC.11.939

[1] [2] [2][2]
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B(XL; Ji → Jf ) =
ℳ2

2Ji + 1
Reduced 
transition 
strength

Reduced 
matrix 
element

ϵp,n = ep,n + δp,n
Bare nucleon charge Core-polarisation charge

calculated

𝒜p,n ℳ = 𝒜p ⋅ ϵp + 𝒜n ⋅ ϵn
Proton Neutron

Effective nucleon charge

Interpretation
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SM theory

• Shell-model calculations: restricted (f7/2)13 and full fp shell 

• GFPX1A and KB3G Hamiltonians used 

‣ Restricted model space similar to historical work. 

‣ Full model space reduced by roughly half.

Two ‘observations’:  
• E2 transitions are generally enhanced in the full fp-shell model space. 
• Dominated by the proton component (Ap and An similar in strong B(E2)s in the region).
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Proton effective charges

2 4 6
λ

0.0

0.5

1.0

1.5

2.0

ε p

Theory [Sagawa, 1979]
Experiment [du Rietz, 2004]
Experiment [this work]

ϵp + ϵn ≈ 2.0

These can be evaluated by considering coupling of 
valence nucleons to (core) particle-hole excitations.  

Choice of—and sensitivity to—the residual particle-
hole interaction adopted in the calculation.  

Considered for seven interactions by Sagawa.  
- Wigner-type (red) interaction closest match.

10.1103/PhysRevC.19.506
Excellent agreement for λ = 2 

All of the theoretical results are too large for λ=4 and λ=6. 

E2 effective charge: 

E4 effective charge:  

E6 effective charge: 

ϵp ≈ 1.12
ϵp = 0.64(6)
ϵp = 0.62(13)
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Connection to single-particle behaviour?

10.1103/PhysRevLett.111.042502

IPM

Expt.

E6 matrix element and (e,e’p) cross sections: 

- both expressed in spectroscopic amplitudes. 

- both ‘quenched’ by a similar magnitude. 

Attributed to short- and long-range correlations. 

Similarities suggest these are connected.

Any model developed to understand quenching of 
reaction cross sections should be extended to 

calculations of electromagnetic matrix elements.
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Where to from here?
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L. G. Sarmiento, et 
al. Nat. Commun. 14, 
5961 (2023). 
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Where to from here?
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Summary

• Unambiguous confirmation of the highest-known transition multipolarity in nature (E6). 

• Transition strengths for the high-multipolarity transitions from the 2.54-minute, J=19- 

isomer in 53Fe have been determined. 

• Shell-model calculations highlight the need for cross-shell mixing to explain the 

experimentally observed strengths.  

• Proton effective charges are suppressed in high-multipolarity, electric transitions, 

which are fundamentally different in nature from collective E2 transitions.  

• Deeper theoretical investigation required to fully understand the difference. 
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